RUKESH commited on
Commit
12e1da1
·
1 Parent(s): 0da4699

Model save

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: dmis-lab/biobert-v1.1
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: phibert-finetuned-ner-new-1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # phibert-finetuned-ner-new-1
19
+
20
+ This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0184
23
+ - Precision: 0.9485
24
+ - Recall: 0.9533
25
+ - F1: 0.9509
26
+ - Accuracy: 0.9963
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.044 | 1.0 | 5915 | 0.0236 | 0.9014 | 0.9109 | 0.9061 | 0.9937 |
58
+ | 0.0266 | 2.0 | 11830 | 0.0209 | 0.9095 | 0.9271 | 0.9182 | 0.9943 |
59
+ | 0.0101 | 3.0 | 17745 | 0.0191 | 0.9335 | 0.9452 | 0.9393 | 0.9955 |
60
+ | 0.0104 | 4.0 | 23660 | 0.0181 | 0.9349 | 0.9483 | 0.9415 | 0.9959 |
61
+ | 0.0039 | 5.0 | 29575 | 0.0184 | 0.9485 | 0.9533 | 0.9509 | 0.9963 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.32.1
67
+ - Pytorch 2.0.1+cu118
68
+ - Datasets 2.14.4
69
+ - Tokenizers 0.13.3