--- base_model: dmis-lab/biobert-v1.1 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: phibert-finetuned-ner-new-1 results: [] --- # phibert-finetuned-ner-new-1 This model is a fine-tuned version of [dmis-lab/biobert-v1.1](https://huggingface.co/dmis-lab/biobert-v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0184 - Precision: 0.9485 - Recall: 0.9533 - F1: 0.9509 - Accuracy: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.044 | 1.0 | 5915 | 0.0236 | 0.9014 | 0.9109 | 0.9061 | 0.9937 | | 0.0266 | 2.0 | 11830 | 0.0209 | 0.9095 | 0.9271 | 0.9182 | 0.9943 | | 0.0101 | 3.0 | 17745 | 0.0191 | 0.9335 | 0.9452 | 0.9393 | 0.9955 | | 0.0104 | 4.0 | 23660 | 0.0181 | 0.9349 | 0.9483 | 0.9415 | 0.9959 | | 0.0039 | 5.0 | 29575 | 0.0184 | 0.9485 | 0.9533 | 0.9509 | 0.9963 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3