ybelkada commited on
Commit
a2dfc9f
1 Parent(s): 9fb90f3

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +128 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - EleutherAI/pile
4
+ ---
5
+
6
+ ![RWKlogo.png](https://s3.amazonaws.com/moonup/production/uploads/62441d1d9fdefb55a0b7d12c/UWpP-lGRZJJDaEx_uUlDv.png)
7
+
8
+ # Model card for RWKV-4 | 7B parameters chat version (Raven)
9
+
10
+ RWKV is a project led by [Bo Peng](https://github.com/BlinkDL). Learn more about the model architecture in the blogposts from Johan Wind [here](https://johanwind.github.io/2023/03/23/rwkv_overview.html) and [here](https://johanwind.github.io/2023/03/23/rwkv_details.html). Learn more about the project by joining the [RWKV discord server](https://discordapp.com/users/468093332535640064).
11
+
12
+ # Table of contents
13
+
14
+ 0. [TL;DR](#TL;DR)
15
+ 1. [Model Details](#model-details)
16
+ 2. [Usage](#usage)
17
+ 3. [Citation](#citation)
18
+
19
+ ## TL;DR
20
+
21
+ Below is the description from the [original repository](https://github.com/BlinkDL/RWKV-LM)
22
+ > RWKV is an RNN with transformer-level LLM performance. It can be directly trained like a GPT (parallelizable). It's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding.
23
+
24
+ ## Model Details
25
+
26
+ The details of the architecture can be found on the blogpost mentioned above and the Hugging Face blogpost of the integration.
27
+
28
+ ## Usage
29
+
30
+ ### Convert the raw weights to the HF format
31
+
32
+ You can use the [`convert_rwkv_checkpoint_to_hf.py`](https://github.com/huggingface/transformers/tree/main/src/transformers/models/rwkv/convert_rwkv_checkpoint_to_hf.py) script by specifying the repo_id of the original weights, the filename and the output directory. You can also optionally directly push the converted model on the Hub by passing `--push_to_hub` flag and `--model_name` argument to specify where to push the converted weights.
33
+
34
+ ```bash
35
+ python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv
36
+ ```
37
+
38
+ ### Generate text
39
+
40
+ You can use the `AutoModelForCausalLM` and `AutoTokenizer` classes to generate texts from the model. Expand the sections below to understand how to run the model in different scenarios:
41
+ The "Raven" models needs to be prompted in a specific way, learn more about that [in the integration blogpost](https://huggingface.co/blog/rwkv).
42
+
43
+ ### Running the model on a CPU
44
+
45
+ <details>
46
+ <summary> Click to expand </summary>
47
+
48
+ ```python
49
+ from transformers import AutoModelForCausalLM, AutoTokenizer
50
+
51
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-7b")
52
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-7b")
53
+
54
+ prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
55
+
56
+ inputs = tokenizer(prompt, return_tensors="pt")
57
+ output = model.generate(inputs["input_ids"], max_new_tokens=40)
58
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
59
+ ```
60
+
61
+
62
+ ### Running the model on a single GPU
63
+
64
+ <details>
65
+ <summary> Click to expand </summary>
66
+
67
+ ```python
68
+ from transformers import AutoModelForCausalLM, AutoTokenizer
69
+
70
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-7b").to(0)
71
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-7b")
72
+
73
+ prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
74
+
75
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
76
+ output = model.generate(inputs["input_ids"], max_new_tokens=40)
77
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
78
+ ```
79
+
80
+ </details>
81
+
82
+ </details>
83
+
84
+ ### Running the model in half-precision, on GPU
85
+
86
+ <details>
87
+ <summary> Click to expand </summary>
88
+
89
+ ```python
90
+ import torch
91
+ from transformers import AutoModelForCausalLM, AutoTokenizer
92
+
93
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-7b", torch_dtype=torch.float16).to(0)
94
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-7b")
95
+
96
+ prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
97
+
98
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
99
+ output = model.generate(inputs["input_ids"], max_new_tokens=40)
100
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
101
+ ```
102
+
103
+ </details>
104
+
105
+
106
+ ### Running the model multiple GPUs
107
+ <details>
108
+ <summary> Click to expand </summary>
109
+
110
+ ```python
111
+ # pip install accelerate
112
+ from transformers import AutoModelForCausalLM, AutoTokenizer
113
+
114
+ model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-raven-7b", device_map="auto")
115
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-raven-7b")
116
+
117
+ prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
118
+
119
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
120
+ output = model.generate(inputs["input_ids"], max_new_tokens=40)
121
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
122
+ ```
123
+
124
+ </details>
125
+
126
+ ## Citation
127
+
128
+ If you use this model, please consider citing the original work, from the original repo [here](https://github.com/BlinkDL/ChatRWKV/)