ppo-LunarLander-v2 / config.json
RafaelJaime's picture
Upload PPO LunarLander-v2 trained agent
9ee7dc2 verified
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae9ed405cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae9ed405d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae9ed405e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae9ed405ea0>", "_build": "<function ActorCriticPolicy._build at 0x7ae9ed405f30>", "forward": "<function ActorCriticPolicy.forward at 0x7ae9ed405fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae9ed406050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae9ed4060e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae9ed406170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae9ed406200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae9ed406290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae9ed406320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae98f05aec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733239728969512525, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAnB71R1U0+xiMjPRxIkr6LSos7HsSLvQAAAAAAAAAAgGW6vZQ74D1+AXo9nsh4voJxHr2x2BY9AAAAAAAAAADNUf68PWw5uzC3uju1m6Q8RN44PMXtjL0AAIA/AACAP0CEiD0Dxy68Fn0CvmE/ez2RKEs9iJnUvAAAgD8AAIA/zTL+vPDROz+vdau8LYDOviL/U704GEO9AAAAAAAAAABzOco9xe2iPITTEb4is5q+9WpkvcS1rb0AAAAAAAAAAM25nrxIT4a6rgb0M2CfKa8CJMG6zue5swAAgD8AAIA/TV0APqVCgD/1XaW8tMDevt7xqz0dAYm9AAAAAAAAAABzvBY+3welP22zFz+3gNS+fwtLPntMyz4AAAAAAAAAAI1fVr6zPRI/Pl75PWzAv74IzpW922mIPAAAAAAAAAAAALjju2KpYj+O8rE7y2Tgvg2l0LvFN269AAAAAAAAAAAajGs97mjWPobe9b3dpMi+5mGWvSJaSzwAAAAAAAAAAOBIXT635hi9pv2KOy4ONbo34IW+QsUJuwAAgD8AAIA/zcuvPH9eZT+Czky9b1Lnvk0xPTy2oUm9AAAAAAAAAACTXCA+Uw8mPxovtr1ljOK+oD5OPS7VDD0AAAAAAAAAADPpK7xvbQw+sFDdPf+Dgb7zsEc9JhlWPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV9wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHA+udTYNAmMAWyUS+GMAXSUR0CeMGhA4XGfdX2UKGgGR0Bv4HNxEORUaAdL9WgIR0CeMXOeJ53UdX2UKGgGR0BxSly2hIvraAdL62gIR0CeMgTufEn9dX2UKGgGR0BQz0jgQ6IWaAdLxmgIR0CeMg9Sde6adX2UKGgGR0Bx3F/tpmEoaAdL9GgIR0CeMj8qnWJ8dX2UKGgGR0BxS0OtnwocaAdL+WgIR0CeMs10DEFXdX2UKGgGR0ByhrXDm8ujaAdL+mgIR0CeMuVfNRm9dX2UKGgGR0Bxi8bNr0rcaAdL/2gIR0CeMuQAMlTndX2UKGgGR0BwjicQRPGiaAdL+GgIR0CeMxMqz7djdX2UKGgGR0Bvrs/6fra/aAdL+WgIR0CeM0iKBNEgdX2UKGgGR0Bu040O3DvWaAdL3GgIR0CeM6bvgFX8dX2UKGgGR0BwJnpFCswMaAdNBAFoCEdAnjRvYvnKXHV9lChoBkdAcU4iBoVVP2gHS/VoCEdAnjTqlxffGnV9lChoBkdAcxwgqEvkBGgHS9poCEdAnjUwqVhTfnV9lChoBkdAUx5w++ueSWgHS4JoCEdAnjXh3eN1hnV9lChoBkdAb/1jriVB2WgHS+hoCEdAnjXhciW3SnV9lChoBkdAchUEK3NLUWgHS/JoCEdAnjX6YVqN63V9lChoBkdAcpSZB9kSVWgHS95oCEdAnjeJWaMJhXV9lChoBkdAcQqB8x9G7WgHS+ZoCEdAnjeGJrLyMHV9lChoBkdAcZ3zq8lHBmgHS/5oCEdAnjeUqpcX33V9lChoBkdAcNQbI91U2mgHS/FoCEdAnjfdpRGc4HV9lChoBkdAbo1hrFfiP2gHS/ZoCEdAnjjWozeoDXV9lChoBkdAcvUBjFyaNWgHTQUBaAhHQJ45yETQE6l1fZQoaAZHQHDC7hR64UhoB00cAWgIR0CeOdLteD3/dX2UKGgGR0ByphUBGQS0aAdNFAFoCEdAnjnpLEk0JnV9lChoBkdAcjBizsyBTWgHTQIBaAhHQJ46I0IkZ751fZQoaAZHQHIGnXd0q6RoB0viaAhHQJ46yPFNtZV1fZQoaAZHQHBkbuDzyz5oB00HAWgIR0CeOzL3K0UodX2UKGgGR0BxdgpZwGW2aAdL0mgIR0CeO2Kk2xY8dX2UKGgGR0BxVnvPTodNaAdNDAFoCEdAnjwxiCrcTXV9lChoBkdAcJSaF23az2gHS/9oCEdAnjyS0F8ohXV9lChoBkdAcgXc2BJ7LWgHS/9oCEdAnjyndXT3I3V9lChoBkdAcGMLFn7HhmgHS+doCEdAnj2cC5mRNnV9lChoBkdAcbGu9OARTWgHS/1oCEdAnj5CjL0SRXV9lChoBkdAch3H8TBZZGgHTQoBaAhHQJ4+kNrj5sV1fZQoaAZHQHAvOTA31jBoB0vkaAhHQJ5TDkjopx51fZQoaAZHQHDdKTr3TNNoB0vWaAhHQJ5TkG0NSZV1fZQoaAZHQHEF2pqASWZoB00xAWgIR0CeVBJOWSlndX2UKGgGR0BwKwD6nBLxaAdL5mgIR0CeVBu9vjwQdX2UKGgGR0BzeoVuaWonaAdL7mgIR0CeVDpDeCTVdX2UKGgGR0ByZXARChN/aAdL2GgIR0CeVQmtyPuHdX2UKGgGR0Bw525NGmUGaAdL92gIR0CeVXLUCq6wdX2UKGgGR0Bw5hUgjhUBaAdNEQFoCEdAnlV8bFS88XV9lChoBkdAb7URLbpNbmgHS9hoCEdAnlYKpLmITHV9lChoBkdAcX7uaWom5WgHTRUBaAhHQJ5W10NjLB91fZQoaAZHQHEPh1HOKO1oB00GAWgIR0CeV6a2WpqAdX2UKGgGR0BzrGK77Kq5aAdNCQFoCEdAnlfPy9VWCHV9lChoBkdActzpI+W4VmgHS85oCEdAnlfiydFvynV9lChoBkdAcV5GwzLwF2gHS+ZoCEdAnlfifQKKHnV9lChoBkdAcjioAn2IwmgHS/FoCEdAnlkdGd7OV3V9lChoBkdAcn7XzUZvUGgHS+VoCEdAnlkghfShJ3V9lChoBkdAc5+UC7sfJWgHS9doCEdAnln2fPHDJnV9lChoBkdAcZRjVx0dR2gHTQIBaAhHQJ5aeX4TK1Z1fZQoaAZHQHCRh+nZTQ5oB0vyaAhHQJ5akFA3T/h1fZQoaAZHQHOFLilzltFoB0vfaAhHQJ5bA5vLowF1fZQoaAZHQHGACb6P8yhoB0vfaAhHQJ5ba4UeuFJ1fZQoaAZHQHDRrleWv8toB0vfaAhHQJ5bdRceKbd1fZQoaAZHQHBwyeEqUeNoB0vZaAhHQJ5b3QVsUIt1fZQoaAZHQHNR29QGfPJoB00wAWgIR0CeXDm4y44IdX2UKGgGR0BmnEfms/6gaAdN6ANoCEdAnlzf7m+0xHV9lChoBkdAcabeJ53Tu2gHS/doCEdAnl1un2qT83V9lChoBkdAcbXBJ7LMcWgHS+JoCEdAnl3nZwn6VXV9lChoBkdAcsM8FpwjuGgHS/RoCEdAnl4lsP8Q7XV9lChoBkdAcmEVtXPqs2gHS+xoCEdAnl4rIT4+KXV9lChoBkdAcTkOKfnOjmgHTRMBaAhHQJ5fBJul41R1fZQoaAZHQHHLn8baRIVoB0vpaAhHQJ5fM/Rmbsp1fZQoaAZHQHGy2RaHKwJoB0v8aAhHQJ5fo24uscR1fZQoaAZHQHGIHM2WIGhoB0vSaAhHQJ5fyV5a/yp1fZQoaAZHQHNfnSro4dZoB0vHaAhHQJ5f/rdFfAt1fZQoaAZHQHAlJoPCl8BoB0v1aAhHQJ5gK9/SYw91fZQoaAZHQHKgbehwl0JoB00JAWgIR0CeYSQMQVbidX2UKGgGR0BugJRZU1htaAdL+2gIR0CeYZsYEW69dX2UKGgGR0BwXbxjJ+2FaAdL62gIR0CeYaP9DQZ5dX2UKGgGR0ByURRGc4HYaAdL92gIR0CeYkHj6vaDdX2UKGgGR0Bwvv4etCAuaAdL42gIR0CeYmAp8WsSdX2UKGgGR0BuoejO9nK5aAdL22gIR0CeY2NgSeyzdX2UKGgGR0BzXxwHZ9NOaAdNAwFoCEdAnmO3HFPznXV9lChoBkdAbljgxagVXWgHS/loCEdAnmPqtknTiXV9lChoBkdAb/xor4Fia2gHS/VoCEdAnmQQp4KQaXV9lChoBkdAbZ0CK77KrGgHS99oCEdAnmSWF36hx3V9lChoBkdAcQjQhwEQoWgHS/NoCEdAnmTfcFhXsHV9lChoBkdAccqPZZjhDWgHS+doCEdAnmVj7ALy+nV9lChoBkdAcx9WxhUip2gHS+BoCEdAnmVyVv/BFnV9lChoBkdAclZcIqsls2gHS/ZoCEdAnmWX7k4m1XV9lChoBkdAcrQdsBQvYmgHS+NoCEdAnmaeTRplBnV9lChoBkdAcYfCBf8dgmgHTSsBaAhHQJ5nXeBQN1B1fZQoaAZHQG2K7MgU1yhoB0veaAhHQJ5nmb2Dg651fZQoaAZHQHI6T544ZMtoB0v/aAhHQJ5nv3i704B1fZQoaAZHQG+sRPXTVlRoB00CAWgIR0CeaJyWzF/AdX2UKGgGR0BwK1Jul41QaAdNKgFoCEdAnmjZOSGJvnV9lChoBkdAco7sniNsFmgHS9xoCEdAnmkANPP9k3V9lChoBkdAcumLmp2lmGgHS/toCEdAnml6OktVaXV9lChoBkdAcojhB7eEZmgHS/FoCEdAnmnodhiLEXV9lChoBkdAcZGMdcSoO2gHS91oCEdAnmn1awD/2nV9lChoBkdAbnuMDwH7g2gHS+NoCEdAnmpm/rSmZXV9lChoBkdAcUTyAQQL/mgHTRYBaAhHQJ5qqVQhwER1fZQoaAZHQHIrYCU5dW1oB0vcaAhHQJ5qyaiKziV1fZQoaAZHQG85ue8PFvRoB0vbaAhHQJ5q5y4nWrh1fZQoaAZHQG1OSofjjrBoB0v4aAhHQJ5rU593KSx1fZQoaAZHQHMC/boKUmloB0vhaAhHQJ5sBg8bJfZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}