indictrans2-indic-en-dist-200M / configuration_indictrans.py
Raghavan's picture
Upload 7 files
359d319
raw
history blame
14.1 kB
# coding=utf-8
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch IndicTrans config."""
from collections import OrderedDict
from typing import Any, Mapping, Optional
from transformers import PreTrainedTokenizer
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from transformers.onnx.utils import compute_effective_axis_dimension
from transformers.utils import TensorType, is_torch_available
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
class IndicTransConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`IT2Model`]. It is used to instantiate an
IT2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the IT2
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the IT2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`IT2Model`] or
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
```"""
model_type = "IndicTrans"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
}
def __init__(
self,
encoder_vocab_size=None,
decoder_vocab_size=None,
encoder_embed_dim=512,
decoder_embed_dim=512,
max_source_positions=210,
max_target_positions=210,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
encoder_layerdrop=0.00,
decoder_layerdrop=0.00,
use_cache=True,
is_encoder_decoder=True,
activation_function="relu",
encoder_normalize_before=False,
decoder_normalize_before=False,
layernorm_embedding=False,
share_decoder_input_output_embed=False,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
scale_embedding=True,
decoder_start_token_id=2,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.encoder_vocab_size = encoder_vocab_size
self.decoder_vocab_size = decoder_vocab_size
self.encoder_normalize_before = encoder_normalize_before
self.decoder_normalize_before = decoder_normalize_before
self.layernorm_embedding = layernorm_embedding
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
self.encoder_embed_dim = encoder_embed_dim
self.decoder_embed_dim = decoder_embed_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding
self.share_decoder_input_output_embed = share_decoder_input_output_embed
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
**kwargs,
)
class IndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
common_inputs["decoder_attention_mask"] = {
0: "batch",
1: "past_decoder_sequence + sequence",
}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
common_inputs["decoder_attention_mask"] = {
0: "batch",
1: "decoder_sequence",
}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
# answering are not supported for IT2, but this name is preserved to be able to check that the copy matches what
# was done for BART so that it can be updated if need be.
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
batch_size = compute_effective_axis_dimension(
batch_size,
fixed_dimension=OnnxConfig.default_fixed_batch,
num_token_to_add=0,
)
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
seq_length = compute_effective_axis_dimension(
seq_length,
fixed_dimension=OnnxConfig.default_fixed_sequence,
num_token_to_add=token_to_add,
)
# Generate dummy inputs according to compute batch and sequence
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
return common_inputs
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
self,
tokenizer: PreTrainedTokenizer,
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional[TensorType] = None,
) -> Mapping[str, Any]:
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, seq_length, is_pair, framework
)
# Generate decoder inputs
decoder_seq_length = seq_length if not self.use_past else 1
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
tokenizer, batch_size, decoder_seq_length, is_pair, framework
)
decoder_inputs = {
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()
}
common_inputs = dict(**encoder_inputs, **decoder_inputs)
if self.use_past:
if not is_torch_available():
raise ValueError(
"Cannot generate dummy past_keys inputs without PyTorch installed."
)
else:
import torch
batch, encoder_seq_length = common_inputs["input_ids"].shape
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
(
num_encoder_attention_heads,
num_decoder_attention_heads,
) = self.num_attention_heads
encoder_shape = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
decoder_past_length = decoder_seq_length + 3
decoder_shape = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
common_inputs["decoder_attention_mask"] = torch.cat(
[
common_inputs["decoder_attention_mask"],
torch.ones(batch, decoder_past_length),
],
dim=1,
)
common_inputs["past_key_values"] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
num_encoder_layers, num_decoder_layers = self.num_layers
min_num_layers = min(num_encoder_layers, num_decoder_layers)
max_num_layers = (
max(num_encoder_layers, num_decoder_layers) - min_num_layers
)
remaining_side_name = (
"encoder" if num_encoder_layers > num_decoder_layers else "decoder"
)
for _ in range(min_num_layers):
common_inputs["past_key_values"].append(
(
torch.zeros(decoder_shape),
torch.zeros(decoder_shape),
torch.zeros(encoder_shape),
torch.zeros(encoder_shape),
)
)
# TODO: test this.
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(min_num_layers, max_num_layers):
common_inputs["past_key_values"].append(
(torch.zeros(shape), torch.zeros(shape))
)
return common_inputs
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm