Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- lunar-test.zip +2 -2
- lunar-test/data +6 -6
- lunar-test/policy.optimizer.pth +1 -1
- lunar-test/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 224.73 +/- 57.89
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651735138.0747476, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMod75DjWS8IuiJu2c4XLm6zNo9NR0yOgAAgD8AAIA/o+WDPp8lszye4Do7bo2TOVWqQj7HxAc6AACAPwAAgD/g0GI+TElWPxrAg71Qxxq+JVqvPXr7Fb0AAAAAAAAAAJqDnb3B9pQ/XU3mvT0yXb7yWQa+8NpPPAAAAAAAAAAAANK5vMNVK7pyiIi7T1dZtrFVbrsbFqE6AACAPwAAgD/AeLU9SG+QuqzonzuAcPo1Hf4nuQV+uboAAIA/AACAPwDgfj0UEJS6zhFwuRU/+rNqVuc5JBOKOAAAgD8AAIA/+ooAvlLgsbkFLPo7K+IauR/OtrsuRwc6AACAPwAAgD8T7ZM+OOGQu+5HCTz7FgK5rwH1vONjfTYAAIA/AAAAAG2OGL6ez7U9vefvPCrqWr4iqZI9bnPDvAAAAAAAAAAA2nppvoVzubkJdMs6D/23NYKZULqtNey5AACAPwAAgD+iHaO+8sdxPys/aT23iFi+O0WmPIZ/Bz4AAAAAAAAAAM1Ybjz21AS6pc4ZuWTyU7U/o8y6/inINAAAgD8AAIA/GjCbPR+9vrlQlvm7q5GNtHqflDojO+wzAACAPwAAgD+NbaW9FCb0Oe75QjufZkm8cE9Ju8LsXr0AAAAAAAAAALpAVr5gANg+TlqTPRpSjb6PVhg+2PZ5PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMZV+wllvYUCUhpRSlIwBbJRN6AOMAXSUR0CFCX0p3HJcdX2UKGgGaAloD0MIrfwyGCPhUkCUhpRSlGgVTegDaBZHQIUlEnCwbER1fZQoaAZoCWgPQwiQEOULWm5cQJSGlFKUaBVN6ANoFkdAhSWY/NZ/1HV9lChoBmgJaA9DCHpU/N+RWGNAlIaUUpRoFU3oA2gWR0CFPUE2YOUddX2UKGgGaAloD0MITyFX6lkQ/7+UhpRSlGgVTUQCaBZHQIVAYQtjCpF1fZQoaAZoCWgPQwjNyYtMwGlgQJSGlFKUaBVN6ANoFkdAhUjPxpcopnV9lChoBmgJaA9DCI5XIHrSC2NAlIaUUpRoFU3oA2gWR0CFrq6BiCrcdX2UKGgGaAloD0MIE0NyMnEdYkCUhpRSlGgVTegDaBZHQIW4/r8iwB51fZQoaAZoCWgPQwg6IAn7djhiQJSGlFKUaBVN6ANoFkdAhb0pyyUs4HV9lChoBmgJaA9DCHxFt17Tw1hAlIaUUpRoFU3oA2gWR0CFvxVrhzeXdX2UKGgGaAloD0MIOwDirl7DXUCUhpRSlGgVTegDaBZHQIXFuy9mHxl1fZQoaAZoCWgPQwgu4jsx6xZXQJSGlFKUaBVN6ANoFkdAhdDOkLx7RnV9lChoBmgJaA9DCGLboswG5lhAlIaUUpRoFU3oA2gWR0CF17ObiIcjdX2UKGgGaAloD0MI73VSX5Z2YECUhpRSlGgVTegDaBZHQIXZK7Ciypt1fZQoaAZoCWgPQwiob5nTZdBhQJSGlFKUaBVN6ANoFkdAheCWV/tpmHV9lChoBmgJaA9DCN3T1R2LHltAlIaUUpRoFU3oA2gWR0CF5fOkcjqwdX2UKGgGaAloD0MIKeeLvZefZ0CUhpRSlGgVTegDaBZHQIXnDm0VrRB1fZQoaAZoCWgPQwgBbhYvFkBMQJSGlFKUaBVNjwFoFkdAhe8UuUUwjHV9lChoBmgJaA9DCDdwB+qUoUxAlIaUUpRoFU3oA2gWR0CGATjy4FzNdX2UKGgGaAloD0MIelT83xGeVkCUhpRSlGgVTegDaBZHQIYBt0eU6gd1fZQoaAZoCWgPQwiXb31Yb6QlQJSGlFKUaBVNMQFoFkdAhgx/sVtXP3V9lChoBmgJaA9DCBTtKqR8KWJAlIaUUpRoFU3oA2gWR0CGFuyvcJt0dX2UKGgGaAloD0MI63Hfap2YWkCUhpRSlGgVTegDaBZHQIYaEH+qBEt1fZQoaAZoCWgPQwhnRdREnxdhQJSGlFKUaBVN6ANoFkdAhiIZ5JK8MHV9lChoBmgJaA9DCACrI0c6w/k/lIaUUpRoFUvcaBZHQIYkn+MqBmR1fZQoaAZoCWgPQwgiqvBneElfQJSGlFKUaBVN6ANoFkdAhpEAH/tICnV9lChoBmgJaA9DCNqs+lxtc1xAlIaUUpRoFU3oA2gWR0CGlNESdvsJdX2UKGgGaAloD0MITP+SVKacWECUhpRSlGgVTegDaBZHQIaWsbedkJ91fZQoaAZoCWgPQwj+1HjpJhFYQJSGlFKUaBVN6ANoFkdAhp0j8DSw4nV9lChoBmgJaA9DCLh0zHnGCWJAlIaUUpRoFU3oA2gWR0CGqHIvrWy1dX2UKGgGaAloD0MIaLJ/noa1YkCUhpRSlGgVTegDaBZHQIavDCHh0hh1fZQoaAZoCWgPQwjNWDSdnYNaQJSGlFKUaBVN6ANoFkdAhrCINmUW23V9lChoBmgJaA9DCCm0rPvHQFtAlIaUUpRoFU3oA2gWR0CGvcI+nqFAdX2UKGgGaAloD0MIOh4zUBnZXkCUhpRSlGgVTegDaBZHQIa/AMOPNml1fZQoaAZoCWgPQwgRb51/u6wLQJSGlFKUaBVNCwFoFkdAhr9rv9cbBHV9lChoBmgJaA9DCFFqL6LtACLAlIaUUpRoFU0mAWgWR0CGwDk078vVdX2UKGgGaAloD0MIh4cwfhrRX0CUhpRSlGgVTegDaBZHQIbHkMiKR+11fZQoaAZoCWgPQwipFDsahwxXQJSGlFKUaBVN6ANoFkdAhtpVTrE9+3V9lChoBmgJaA9DCOJWQQx0+VVAlIaUUpRoFU3oA2gWR0CG5bytmthedX2UKGgGaAloD0MIuAN1yqNxWUCUhpRSlGgVTegDaBZHQIbwlJBgNPR1fZQoaAZoCWgPQwj93NCUncxfQJSGlFKUaBVN6ANoFkdAhvOtRWLgoHV9lChoBmgJaA9DCOqVsgxxe1xAlIaUUpRoFU3oA2gWR0CG+2J1JUYLdX2UKGgGaAloD0MIbyu9NhvuXECUhpRSlGgVTegDaBZHQIb94zabnYB1fZQoaAZoCWgPQwh8fEJ23oo+QJSGlFKUaBVNOgFoFkdAhwwcSPEKmnV9lChoBmgJaA9DCCttcY3PVlxAlIaUUpRoFU3oA2gWR0CHbGYTj/+9dX2UKGgGaAloD0MII2sNpXaxYkCUhpRSlGgVTegDaBZHQIdzokona391fZQoaAZoCWgPQwgm4NdIEpBdQJSGlFKUaBVN6ANoFkdAh3/rjHXEqHV9lChoBmgJaA9DCDj1geSdZF5AlIaUUpRoFU3oA2gWR0CHh+uwosqbdX2UKGgGaAloD0MIOkAwR4/bYECUhpRSlGgVTegDaBZHQIeJn6/IsAh1fZQoaAZoCWgPQwgp6PaSxqJbQJSGlFKUaBVN6ANoFkdAh5hTdDYywnV9lChoBmgJaA9DCJPi4xMyXWVAlIaUUpRoFU3oA2gWR0CHmatZFG5MdX2UKGgGaAloD0MIgzKNJhcZYECUhpRSlGgVTegDaBZHQIeaHuogmqp1fZQoaAZoCWgPQwgZA+s4fmlhQJSGlFKUaBVN6ANoFkdAh5sAVoHs1XV9lChoBmgJaA9DCBIR/kXQL1hAlIaUUpRoFU3oA2gWR0CHohfm9xp+dX2UKGgGaAloD0MIfuTWpNtaI8CUhpRSlGgVTUcBaBZHQIe36wW3z+Z1fZQoaAZoCWgPQwg0ZDxKJWRYQJSGlFKUaBVN6ANoFkdAh73jaPCEYnV9lChoBmgJaA9DCIMxIlFo8SzAlIaUUpRoFU1DAWgWR0CHx4jFAE+xdX2UKGgGaAloD0MI/gsEATK1YECUhpRSlGgVTegDaBZHQIfHjABT4tZ1fZQoaAZoCWgPQwg66X3ja8pXQJSGlFKUaBVN6ANoFkdAh8pJlrdnCnV9lChoBmgJaA9DCKN1VDVBVVhAlIaUUpRoFU3oA2gWR0CH0TAAQxvfdX2UKGgGaAloD0MIEFg5tMj0YkCUhpRSlGgVTegDaBZHQIfTg176YVt1fZQoaAZoCWgPQwj6YYTw6KBhQJSGlFKUaBVN6ANoFkdAh+GC+tbLU3V9lChoBmgJaA9DCB9pcFtb2CzAlIaUUpRoFUv5aBZHQIfrjnPmgap1fZQoaAZoCWgPQwi0PA/uzpY8wJSGlFKUaBVL12gWR0CH8Jyd4FA3dX2UKGgGaAloD0MIyqgyjLtDYUCUhpRSlGgVTegDaBZHQIg8lcW0qpd1fZQoaAZoCWgPQwg0SwLU1NZXQJSGlFKUaBVN6ANoFkdAiENTch1TznV9lChoBmgJaA9DCDOMu0G0IGJAlIaUUpRoFU3oA2gWR0CIT3dfsu3+dX2UKGgGaAloD0MIQwOxbOaQrD+UhpRSlGgVTRMBaBZHQIhUZk7Omix1fZQoaAZoCWgPQwgV/3dEhQVgQJSGlFKUaBVN6ANoFkdAiFicmShaknV9lChoBmgJaA9DCIVgVb38u15AlIaUUpRoFU3oA2gWR0CIaMtjkMkQdX2UKGgGaAloD0MIX7cIjHUvYUCUhpRSlGgVTegDaBZHQIhqot+TeO51fZQoaAZoCWgPQwgf9GxWfaBiQJSGlFKUaBVN6ANoFkdAiGu2qtHQQnV9lChoBmgJaA9DCJBq2O+JnSnAlIaUUpRoFUv5aBZHQIhvPWpZOi51fZQoaAZoCWgPQwifc7frJUlgQJSGlFKUaBVN6ANoFkdAiHNndXT3I3V9lChoBmgJaA9DCDYf14aKFUPAlIaUUpRoFU0uAWgWR0CIgLOVPepGdX2UKGgGaAloD0MI+8qD9JRTYUCUhpRSlGgVTegDaBZHQIiLJ9ZzPrx1fZQoaAZoCWgPQwgQ641aYbBYQJSGlFKUaBVN6ANoFkdAiJEcQZn+Q3V9lChoBmgJaA9DCCCcTx0r7GJAlIaUUpRoFU3oA2gWR0CImtT5wfhddX2UKGgGaAloD0MISghW1cs7YUCUhpRSlGgVTegDaBZHQIid2ANG3F11fZQoaAZoCWgPQwjU1R2LbZpgQJSGlFKUaBVN6ANoFkdAiKdIKMNtqHV9lChoBmgJaA9DCHCyDdwBW2JAlIaUUpRoFU3oA2gWR0CItz6fra/RdX2UKGgGaAloD0MI9+rjoe+QVUCUhpRSlGgVTegDaBZHQIjCcfxMFll1fZQoaAZoCWgPQwiOdtzwuzdiQJSGlFKUaBVN6ANoFkdAiRWSMcZLqXV9lChoBmgJaA9DCCSdgZGXLFhAlIaUUpRoFU3oA2gWR0CJLaTfR/mUdX2UKGgGaAloD0MIuTMTDOduYkCUhpRSlGgVTegDaBZHQIkyEvboKUp1fZQoaAZoCWgPQwg/UkSGVe1bQJSGlFKUaBVN6ANoFkdAiUFIoNNJv3V9lChoBmgJaA9DCIsYdhiTj1tAlIaUUpRoFU3oA2gWR0CJQw6vq1PWdX2UKGgGaAloD0MIkuo7vyj0XECUhpRSlGgVTegDaBZHQIlECGDcuap1fZQoaAZoCWgPQwgfMA+Z8pJfQJSGlFKUaBVN6ANoFkdAiUeOZ9d/rnV9lChoBmgJaA9DCN/7G7TX8WBAlIaUUpRoFU3oA2gWR0CJS5fR/mT1dX2UKGgGaAloD0MIr5gR3p4RYUCUhpRSlGgVTegDaBZHQIlYwRf4REp1fZQoaAZoCWgPQwiK5ZZWw6hhQJSGlFKUaBVN6ANoFkdAiWMa7/XGwXV9lChoBmgJaA9DCFJDG4ANt1pAlIaUUpRoFU3oA2gWR0CJaVQsPJ7tdX2UKGgGaAloD0MIjj9R2TA+YUCUhpRSlGgVTegDaBZHQIlzM6V+qip1fZQoaAZoCWgPQwh3hxQDJBhbQJSGlFKUaBVN6ANoFkdAiXYpBw++unV9lChoBmgJaA9DCJP+XgqPSWJAlIaUUpRoFU3oA2gWR0CJgAnwXqJNdX2UKGgGaAloD0MIB0FHq1p2YECUhpRSlGgVTegDaBZHQImQFCw8nu11fZQoaAZoCWgPQwjp8BDGT886wJSGlFKUaBVNNQFoFkdAiZt0cOskp3V9lChoBmgJaA9DCPVJ7rCJ9WNAlIaUUpRoFU3oA2gWR0CJnARwqAjIdX2UKGgGaAloD0MIOsssQrGvQMCUhpRSlGgVTToBaBZHQImpoQvpQk51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb03437dc20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb03437dcb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb03437dd40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb03437ddd0>", "_build": "<function ActorCriticPolicy._build at 0x7fb03437de60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb03437def0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb03437df80>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb034386050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0343860e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb034386170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb034386200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0343d32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651736212.1508365, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpd0DwUHwY+W9bqvd+xP75N4mM7c9PrPAAAAAAAAAAAZsjrPNBnhz4wrV68V75VvtT3CL4JQUg9AAAAAAAAAABm7h68TpGlP5WjI70jAqa+DWtIvWvb/jsAAAAAAAAAAJpMRb2FA+S5UMI1OMx9nTNRCU07+4FUtwAAgD8AAIA/s9PjvVx7PLpJ5w+6qeGWtkaJSzu1Ugg2AACAPwAAgD+aTrW89ugXuHrCk7sxyrG2wGPMumgxJjYAAIA/AACAP2YoArxcd0C688U8O3GYFzhivL07WAruuQAAgD8AAIA/8731PRQajbr2KpC7ocKDOAWmnLthqa06AACAPwAAgD+ad6E+r6K8PtgxEb4SrYW+cKtuPTjuQz0AAAAAAAAAAGZGUr324CK6OskYu88Q8bYlCOq6rgYvOgAAgD8AAIA/8xHvPVwHILpjWOW8hwkeu0gK8DoB+gq8AACAPwAAgD9mGdg89jw8urLZiTtyjBM3PXa8OrZToroAAIA/AACAP7Mrbb3k7ME+2TGxvYH1Tr5qBTy9jBaSvAAAAAAAAAAAAP4xvOHsqbo+st06fFihNd1XnrkdaP65AACAPwAAgD8AkAK7tjgWPSUwmr1GmTa++sITvZxPNj0AAAAAAAAAAFMuPr52siK8w77YOoOZ5Dj+FYI9FVSluQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqDrkZjgQY0CUhpRSlIwBbJRN6AOMAXSUR0Ci+HR1HOKPdX2UKGgGaAloD0MIQuxMofOZXkCUhpRSlGgVTegDaBZHQKL5XpeNT991fZQoaAZoCWgPQwgQsiyY+OthQJSGlFKUaBVN6ANoFkdAovl5PGhmG3V9lChoBmgJaA9DCACpTZxcD2JAlIaUUpRoFU3oA2gWR0Ci+pOHWSU1dX2UKGgGaAloD0MIC7YRT3avYECUhpRSlGgVTegDaBZHQKL97n8Kohp1fZQoaAZoCWgPQwhY5NcPMR1hQJSGlFKUaBVN6ANoFkdAowHtVR1ox3V9lChoBmgJaA9DCCMUW0HTVGBAlIaUUpRoFU3oA2gWR0CjCFVZTyavdX2UKGgGaAloD0MI/reSHRsjZkCUhpRSlGgVTegDaBZHQKMIyWD6Fdt1fZQoaAZoCWgPQwjE7dCwmEhgQJSGlFKUaBVN6ANoFkdAowug80UGmnV9lChoBmgJaA9DCLD/OjdtO2BAlIaUUpRoFU3oA2gWR0CjErYIa99MdX2UKGgGaAloD0MIaQBvgQTcV0CUhpRSlGgVTegDaBZHQKMU7WAf+0h1fZQoaAZoCWgPQwiu1/SgICxgQJSGlFKUaBVN6ANoFkdAoxVGr2g3+HV9lChoBmgJaA9DCLWkoxxMxWBAlIaUUpRoFU3oA2gWR0CjFYcJtzjndX2UKGgGaAloD0MIDeTZ5VuCXUCUhpRSlGgVTegDaBZHQKMXggDA8CB1fZQoaAZoCWgPQwgnLscrkM5jQJSGlFKUaBVN6ANoFkdAoxgepbUwz3V9lChoBmgJaA9DCHv3x3tVlWRAlIaUUpRoFU3oA2gWR0CjGLSCFsYVdX2UKGgGaAloD0MI6QyMvKwwX0CUhpRSlGgVTegDaBZHQKMe5XFtKqZ1fZQoaAZoCWgPQwjkgcgiTWdfQJSGlFKUaBVN6ANoFkdAox/aW3Sa3XV9lChoBmgJaA9DCPN1Gf7T/1pAlIaUUpRoFU3oA2gWR0CjH/VAzHjqdX2UKGgGaAloD0MIXi13ZoIlN0CUhpRSlGgVS+xoFkdAoyDYg9vCM3V9lChoBmgJaA9DCHDpmPOMeWJAlIaUUpRoFU3oA2gWR0CjIQKqfe1sdX2UKGgGaAloD0MIBwd7E8MYY0CUhpRSlGgVTegDaBZHQKMkC5lvqC91fZQoaAZoCWgPQwhVTntKTupgQJSGlFKUaBVN6ANoFkdAoyejiqABk3V9lChoBmgJaA9DCBX/d0SFm2JAlIaUUpRoFU3oA2gWR0CjLVgQQL/kdX2UKGgGaAloD0MIPxwkRHnZYUCUhpRSlGgVTegDaBZHQKMtwCsfaHt1fZQoaAZoCWgPQwjZX3ZPHmJkQJSGlFKUaBVN6ANoFkdAozBLz/ZM+XV9lChoBmgJaA9DCCeloNtLgltAlIaUUpRoFU3oA2gWR0CjNqY6GQCCdX2UKGgGaAloD0MII79+iA3WPkCUhpRSlGgVS/poFkdAozeH557gKnV9lChoBmgJaA9DCPcGX5hMPWNAlIaUUpRoFU3oA2gWR0CjOLrdvbXZdX2UKGgGaAloD0MIDoRkAZOBYUCUhpRSlGgVTegDaBZHQKM5E72+PBB1fZQoaAZoCWgPQwip91RO+99iQJSGlFKUaBVN6ANoFkdAozlIeT3Zf3V9lChoBmgJaA9DCMmqCDcZvWJAlIaUUpRoFU3oA2gWR0CjOvyquKXOdX2UKGgGaAloD0MIw/ARMSX1YECUhpRSlGgVTegDaBZHQKM7i4ku6Et1fZQoaAZoCWgPQwgw2A3bFrRjQJSGlFKUaBVN6ANoFkdAo1vPmFJxvXV9lChoBmgJaA9DCMlzfR+OwmJAlIaUUpRoFU3oA2gWR0CjXMZ3kgfVdX2UKGgGaAloD0MImYBfI0nVXUCUhpRSlGgVTegDaBZHQKNc40FbFCN1fZQoaAZoCWgPQwgpdck4RlJkQJSGlFKUaBVN6ANoFkdAo13cjJMg2nV9lChoBmgJaA9DCJi/QuZKGWFAlIaUUpRoFU3oA2gWR0CjXghHbypadX2UKGgGaAloD0MIhQZi2UzJZECUhpRSlGgVTegDaBZHQKNhaUZeiSJ1fZQoaAZoCWgPQwiGkV7U7vBiQJSGlFKUaBVN6ANoFkdAo2VObI91U3V9lChoBmgJaA9DCLQ7pBggsQHAlIaUUpRoFUv2aBZHQKNqzGaQV9F1fZQoaAZoCWgPQwhZUYNpGGljQJSGlFKUaBVN6ANoFkdAo2uMEzO5a3V9lChoBmgJaA9DCNgqweJwwmRAlIaUUpRoFU3oA2gWR0CjbrQrlNlAdX2UKGgGaAloD0MITG9/LpryYkCUhpRSlGgVTegDaBZHQKN0+8/2TPl1fZQoaAZoCWgPQwjc8pGU9PJcQJSGlFKUaBVN6ANoFkdAo3XYePq9oXV9lChoBmgJaA9DCNl6hnBMwGBAlIaUUpRoFU3oA2gWR0CjdwIqbz9TdX2UKGgGaAloD0MIQq8/iU+OY0CUhpRSlGgVTegDaBZHQKN3T70nPVx1fZQoaAZoCWgPQwgejUP9LkphQJSGlFKUaBVN6ANoFkdAo3eBeqrBCXV9lChoBmgJaA9DCBWscTYdr2hAlIaUUpRoFU3oA2gWR0CjeScXenAJdX2UKGgGaAloD0MIArovZ7ZvYECUhpRSlGgVTegDaBZHQKN5rrJKaod1fZQoaAZoCWgPQwhtcvikEwdhQJSGlFKUaBVN6ANoFkdAo4A0nG828HV9lChoBmgJaA9DCAA2IELcAWdAlIaUUpRoFU3oA2gWR0CjgS03n6l+dX2UKGgGaAloD0MIzhlR2pv+Y0CUhpRSlGgVTegDaBZHQKOBSF4cFQl1fZQoaAZoCWgPQwijrUoi+5glwJSGlFKUaBVL7GgWR0CjgaJsO5J9dX2UKGgGaAloD0MIMEs7NRdeYECUhpRSlGgVTegDaBZHQKOCPm16Vt51fZQoaAZoCWgPQwiQ+YBAZwhgQJSGlFKUaBVN6ANoFkdAo4Js1O0sv3V9lChoBmgJaA9DCA/Tvrk/SWRAlIaUUpRoFU3oA2gWR0Cjih0IcBEKdX2UKGgGaAloD0MIS7GjcajXV0CUhpRSlGgVTegDaBZHQKOQBkHUtqZ1fZQoaAZoCWgPQwi/RSdLrelgQJSGlFKUaBVN6ANoFkdAo5DOR/3Fk3V9lChoBmgJaA9DCBZNZyeDrGFAlIaUUpRoFU3oA2gWR0CjlAQa72+PdX2UKGgGaAloD0MIPx9lxAVvX0CUhpRSlGgVTegDaBZHQKOaon+hoM91fZQoaAZoCWgPQwjICn4bYuRdQJSGlFKUaBVN6ANoFkdAo5uMYKpkw3V9lChoBmgJaA9DCLyTT49tll1AlIaUUpRoFU3oA2gWR0CjnLzUZvUCdX2UKGgGaAloD0MIxHqjVhgAZ0CUhpRSlGgVTegDaBZHQKOdIG+sYEZ1fZQoaAZoCWgPQwhJTFDDt0NgQJSGlFKUaBVN6ANoFkdAo51aFCb+cnV9lChoBmgJaA9DCCnqzD0kfmNAlIaUUpRoFU3oA2gWR0Cjny3RG+bmdX2UKGgGaAloD0MISUxQw7d4K0CUhpRSlGgVS+loFkdAo7xPT5O8CnV9lChoBmgJaA9DCPse9dcrZGRAlIaUUpRoFU3oA2gWR0CjwB/7SApbdX2UKGgGaAloD0MIq3gj80ifYkCUhpRSlGgVTegDaBZHQKPBE4DLbHp1fZQoaAZoCWgPQwhNhA1Pr7NkQJSGlFKUaBVN6ANoFkdAo8EudkJ8fHV9lChoBmgJaA9DCPYHym17S2NAlIaUUpRoFU3oA2gWR0CjwYSW7e2vdX2UKGgGaAloD0MIyO2XT9ZOYUCUhpRSlGgVTegDaBZHQKPCHx2jfvZ1fZQoaAZoCWgPQwiSdTi6SgdhQJSGlFKUaBVN6ANoFkdAo8JGHrQgLnV9lChoBmgJaA9DCNsX0At3xkJAlIaUUpRoFUvhaBZHQKPIXTLGJep1fZQoaAZoCWgPQwjlJmppbsJhQJSGlFKUaBVN6ANoFkdAo8jmtyPuHHV9lChoBmgJaA9DCAgcCTRYhGVAlIaUUpRoFU3oA2gWR0Cjzfg/LTx5dX2UKGgGaAloD0MIe4fboWGTZECUhpRSlGgVTegDaBZHQKPOo3z+WGB1fZQoaAZoCWgPQwikHMwmQP5gQJSGlFKUaBVN6ANoFkdAo9FV2NedCnV9lChoBmgJaA9DCMrd5/joS2VAlIaUUpRoFU3oA2gWR0Cj2CIzWPLgdX2UKGgGaAloD0MIiPaxgt8UaECUhpRSlGgVTegDaBZHQKPZU8Rtgrp1fZQoaAZoCWgPQwh+p8mMt15jQJSGlFKUaBVN6ANoFkdAo9ms7CBPK3V9lChoBmgJaA9DCIbj+Qyo4VxAlIaUUpRoFU3oA2gWR0Cj2eVcMVk+dX2UKGgGaAloD0MIwLD8+bY2YkCUhpRSlGgVTegDaBZHQKPbwJY1YQt1fZQoaAZoCWgPQwg7cTlegR1gQJSGlFKUaBVN6ANoFkdAo9+zpqynk3V9lChoBmgJaA9DCKTBbW1h5WVAlIaUUpRoFU3oA2gWR0Cj47FUhmoSdX2UKGgGaAloD0MIP+YDAp15ZkCUhpRSlGgVTegDaBZHQKPkvhlUZNx1fZQoaAZoCWgPQwhPeXQjLAJiQJSGlFKUaBVN6ANoFkdAo+U/0TURWnV9lChoBmgJaA9DCBO4dTfPymNAlIaUUpRoFU3oA2gWR0Cj5e8/D+BIdX2UKGgGaAloD0MIFNGvrR/fYkCUhpRSlGgVTegDaBZHQKPmHsrNGEx1fZQoaAZoCWgPQwjvrN12oUxSQJSGlFKUaBVN6ANoFkdAo+0bqMWGh3V9lChoBmgJaA9DCDJaR1UTqGNAlIaUUpRoFU3oA2gWR0Cj7aTkhib2dX2UKGgGaAloD0MIB2ADIsTLXkCUhpRSlGgVTegDaBZHQKPy75uZThp1fZQoaAZoCWgPQwi86ZYd4ntfQJSGlFKUaBVN6ANoFkdAo/OacTakAXV9lChoBmgJaA9DCNMwfETMhGJAlIaUUpRoFU3oA2gWR0Cj9oY4yXUpdX2UKGgGaAloD0MIN6W8VkLrXUCUhpRSlGgVTegDaBZHQKP9pbhWHUN1fZQoaAZoCWgPQwg02qokshtkQJSGlFKUaBVN6ANoFkdAo/7pIe5nUXV9lChoBmgJaA9DCCcwndbtFGBAlIaUUpRoFU3oA2gWR0Cj/0ffXPJJdX2UKGgGaAloD0MIAaYMHFCQZECUhpRSlGgVTegDaBZHQKP/g/VRUFV1fZQoaAZoCWgPQwgHz4QmCTBgQJSGlFKUaBVN6ANoFkdApAFu+sYEXHV9lChoBmgJaA9DCM2ueyuSrGJAlIaUUpRoFU3oA2gWR0CkBUyde6ZqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar-test.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75652187868d835aabb337601cb09175e90b81bb44acbd85630cacd114f500d9
|
3 |
+
size 144042
|
lunar-test/data
CHANGED
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,14 +69,14 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
"_n_updates": 124,
|
79 |
-
"n_steps":
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651736212.1508365,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpd0DwUHwY+W9bqvd+xP75N4mM7c9PrPAAAAAAAAAAAZsjrPNBnhz4wrV68V75VvtT3CL4JQUg9AAAAAAAAAABm7h68TpGlP5WjI70jAqa+DWtIvWvb/jsAAAAAAAAAAJpMRb2FA+S5UMI1OMx9nTNRCU07+4FUtwAAgD8AAIA/s9PjvVx7PLpJ5w+6qeGWtkaJSzu1Ugg2AACAPwAAgD+aTrW89ugXuHrCk7sxyrG2wGPMumgxJjYAAIA/AACAP2YoArxcd0C688U8O3GYFzhivL07WAruuQAAgD8AAIA/8731PRQajbr2KpC7ocKDOAWmnLthqa06AACAPwAAgD+ad6E+r6K8PtgxEb4SrYW+cKtuPTjuQz0AAAAAAAAAAGZGUr324CK6OskYu88Q8bYlCOq6rgYvOgAAgD8AAIA/8xHvPVwHILpjWOW8hwkeu0gK8DoB+gq8AACAPwAAgD9mGdg89jw8urLZiTtyjBM3PXa8OrZToroAAIA/AACAP7Mrbb3k7ME+2TGxvYH1Tr5qBTy9jBaSvAAAAAAAAAAAAP4xvOHsqbo+st06fFihNd1XnrkdaP65AACAPwAAgD8AkAK7tjgWPSUwmr1GmTa++sITvZxPNj0AAAAAAAAAAFMuPr52siK8w77YOoOZ5Dj+FYI9FVSluQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqDrkZjgQY0CUhpRSlIwBbJRN6AOMAXSUR0Ci+HR1HOKPdX2UKGgGaAloD0MIQuxMofOZXkCUhpRSlGgVTegDaBZHQKL5XpeNT991fZQoaAZoCWgPQwgQsiyY+OthQJSGlFKUaBVN6ANoFkdAovl5PGhmG3V9lChoBmgJaA9DCACpTZxcD2JAlIaUUpRoFU3oA2gWR0Ci+pOHWSU1dX2UKGgGaAloD0MIC7YRT3avYECUhpRSlGgVTegDaBZHQKL97n8Kohp1fZQoaAZoCWgPQwhY5NcPMR1hQJSGlFKUaBVN6ANoFkdAowHtVR1ox3V9lChoBmgJaA9DCCMUW0HTVGBAlIaUUpRoFU3oA2gWR0CjCFVZTyavdX2UKGgGaAloD0MI/reSHRsjZkCUhpRSlGgVTegDaBZHQKMIyWD6Fdt1fZQoaAZoCWgPQwjE7dCwmEhgQJSGlFKUaBVN6ANoFkdAowug80UGmnV9lChoBmgJaA9DCLD/OjdtO2BAlIaUUpRoFU3oA2gWR0CjErYIa99MdX2UKGgGaAloD0MIaQBvgQTcV0CUhpRSlGgVTegDaBZHQKMU7WAf+0h1fZQoaAZoCWgPQwiu1/SgICxgQJSGlFKUaBVN6ANoFkdAoxVGr2g3+HV9lChoBmgJaA9DCLWkoxxMxWBAlIaUUpRoFU3oA2gWR0CjFYcJtzjndX2UKGgGaAloD0MIDeTZ5VuCXUCUhpRSlGgVTegDaBZHQKMXggDA8CB1fZQoaAZoCWgPQwgnLscrkM5jQJSGlFKUaBVN6ANoFkdAoxgepbUwz3V9lChoBmgJaA9DCHv3x3tVlWRAlIaUUpRoFU3oA2gWR0CjGLSCFsYVdX2UKGgGaAloD0MI6QyMvKwwX0CUhpRSlGgVTegDaBZHQKMe5XFtKqZ1fZQoaAZoCWgPQwjkgcgiTWdfQJSGlFKUaBVN6ANoFkdAox/aW3Sa3XV9lChoBmgJaA9DCPN1Gf7T/1pAlIaUUpRoFU3oA2gWR0CjH/VAzHjqdX2UKGgGaAloD0MIXi13ZoIlN0CUhpRSlGgVS+xoFkdAoyDYg9vCM3V9lChoBmgJaA9DCHDpmPOMeWJAlIaUUpRoFU3oA2gWR0CjIQKqfe1sdX2UKGgGaAloD0MIBwd7E8MYY0CUhpRSlGgVTegDaBZHQKMkC5lvqC91fZQoaAZoCWgPQwhVTntKTupgQJSGlFKUaBVN6ANoFkdAoyejiqABk3V9lChoBmgJaA9DCBX/d0SFm2JAlIaUUpRoFU3oA2gWR0CjLVgQQL/kdX2UKGgGaAloD0MIPxwkRHnZYUCUhpRSlGgVTegDaBZHQKMtwCsfaHt1fZQoaAZoCWgPQwjZX3ZPHmJkQJSGlFKUaBVN6ANoFkdAozBLz/ZM+XV9lChoBmgJaA9DCCeloNtLgltAlIaUUpRoFU3oA2gWR0CjNqY6GQCCdX2UKGgGaAloD0MII79+iA3WPkCUhpRSlGgVS/poFkdAozeH557gKnV9lChoBmgJaA9DCPcGX5hMPWNAlIaUUpRoFU3oA2gWR0CjOLrdvbXZdX2UKGgGaAloD0MIDoRkAZOBYUCUhpRSlGgVTegDaBZHQKM5E72+PBB1fZQoaAZoCWgPQwip91RO+99iQJSGlFKUaBVN6ANoFkdAozlIeT3Zf3V9lChoBmgJaA9DCMmqCDcZvWJAlIaUUpRoFU3oA2gWR0CjOvyquKXOdX2UKGgGaAloD0MIw/ARMSX1YECUhpRSlGgVTegDaBZHQKM7i4ku6Et1fZQoaAZoCWgPQwgw2A3bFrRjQJSGlFKUaBVN6ANoFkdAo1vPmFJxvXV9lChoBmgJaA9DCMlzfR+OwmJAlIaUUpRoFU3oA2gWR0CjXMZ3kgfVdX2UKGgGaAloD0MImYBfI0nVXUCUhpRSlGgVTegDaBZHQKNc40FbFCN1fZQoaAZoCWgPQwgpdck4RlJkQJSGlFKUaBVN6ANoFkdAo13cjJMg2nV9lChoBmgJaA9DCJi/QuZKGWFAlIaUUpRoFU3oA2gWR0CjXghHbypadX2UKGgGaAloD0MIhQZi2UzJZECUhpRSlGgVTegDaBZHQKNhaUZeiSJ1fZQoaAZoCWgPQwiGkV7U7vBiQJSGlFKUaBVN6ANoFkdAo2VObI91U3V9lChoBmgJaA9DCLQ7pBggsQHAlIaUUpRoFUv2aBZHQKNqzGaQV9F1fZQoaAZoCWgPQwhZUYNpGGljQJSGlFKUaBVN6ANoFkdAo2uMEzO5a3V9lChoBmgJaA9DCNgqweJwwmRAlIaUUpRoFU3oA2gWR0CjbrQrlNlAdX2UKGgGaAloD0MITG9/LpryYkCUhpRSlGgVTegDaBZHQKN0+8/2TPl1fZQoaAZoCWgPQwjc8pGU9PJcQJSGlFKUaBVN6ANoFkdAo3XYePq9oXV9lChoBmgJaA9DCNl6hnBMwGBAlIaUUpRoFU3oA2gWR0CjdwIqbz9TdX2UKGgGaAloD0MIQq8/iU+OY0CUhpRSlGgVTegDaBZHQKN3T70nPVx1fZQoaAZoCWgPQwgejUP9LkphQJSGlFKUaBVN6ANoFkdAo3eBeqrBCXV9lChoBmgJaA9DCBWscTYdr2hAlIaUUpRoFU3oA2gWR0CjeScXenAJdX2UKGgGaAloD0MIArovZ7ZvYECUhpRSlGgVTegDaBZHQKN5rrJKaod1fZQoaAZoCWgPQwhtcvikEwdhQJSGlFKUaBVN6ANoFkdAo4A0nG828HV9lChoBmgJaA9DCAA2IELcAWdAlIaUUpRoFU3oA2gWR0CjgS03n6l+dX2UKGgGaAloD0MIzhlR2pv+Y0CUhpRSlGgVTegDaBZHQKOBSF4cFQl1fZQoaAZoCWgPQwijrUoi+5glwJSGlFKUaBVL7GgWR0CjgaJsO5J9dX2UKGgGaAloD0MIMEs7NRdeYECUhpRSlGgVTegDaBZHQKOCPm16Vt51fZQoaAZoCWgPQwiQ+YBAZwhgQJSGlFKUaBVN6ANoFkdAo4Js1O0sv3V9lChoBmgJaA9DCA/Tvrk/SWRAlIaUUpRoFU3oA2gWR0Cjih0IcBEKdX2UKGgGaAloD0MIS7GjcajXV0CUhpRSlGgVTegDaBZHQKOQBkHUtqZ1fZQoaAZoCWgPQwi/RSdLrelgQJSGlFKUaBVN6ANoFkdAo5DOR/3Fk3V9lChoBmgJaA9DCBZNZyeDrGFAlIaUUpRoFU3oA2gWR0CjlAQa72+PdX2UKGgGaAloD0MIPx9lxAVvX0CUhpRSlGgVTegDaBZHQKOaon+hoM91fZQoaAZoCWgPQwjICn4bYuRdQJSGlFKUaBVN6ANoFkdAo5uMYKpkw3V9lChoBmgJaA9DCLyTT49tll1AlIaUUpRoFU3oA2gWR0CjnLzUZvUCdX2UKGgGaAloD0MIxHqjVhgAZ0CUhpRSlGgVTegDaBZHQKOdIG+sYEZ1fZQoaAZoCWgPQwhJTFDDt0NgQJSGlFKUaBVN6ANoFkdAo51aFCb+cnV9lChoBmgJaA9DCCnqzD0kfmNAlIaUUpRoFU3oA2gWR0Cjny3RG+bmdX2UKGgGaAloD0MISUxQw7d4K0CUhpRSlGgVS+loFkdAo7xPT5O8CnV9lChoBmgJaA9DCPse9dcrZGRAlIaUUpRoFU3oA2gWR0CjwB/7SApbdX2UKGgGaAloD0MIq3gj80ifYkCUhpRSlGgVTegDaBZHQKPBE4DLbHp1fZQoaAZoCWgPQwhNhA1Pr7NkQJSGlFKUaBVN6ANoFkdAo8EudkJ8fHV9lChoBmgJaA9DCPYHym17S2NAlIaUUpRoFU3oA2gWR0CjwYSW7e2vdX2UKGgGaAloD0MIyO2XT9ZOYUCUhpRSlGgVTegDaBZHQKPCHx2jfvZ1fZQoaAZoCWgPQwiSdTi6SgdhQJSGlFKUaBVN6ANoFkdAo8JGHrQgLnV9lChoBmgJaA9DCNsX0At3xkJAlIaUUpRoFUvhaBZHQKPIXTLGJep1fZQoaAZoCWgPQwjlJmppbsJhQJSGlFKUaBVN6ANoFkdAo8jmtyPuHHV9lChoBmgJaA9DCAgcCTRYhGVAlIaUUpRoFU3oA2gWR0Cjzfg/LTx5dX2UKGgGaAloD0MIe4fboWGTZECUhpRSlGgVTegDaBZHQKPOo3z+WGB1fZQoaAZoCWgPQwikHMwmQP5gQJSGlFKUaBVN6ANoFkdAo9FV2NedCnV9lChoBmgJaA9DCMrd5/joS2VAlIaUUpRoFU3oA2gWR0Cj2CIzWPLgdX2UKGgGaAloD0MIiPaxgt8UaECUhpRSlGgVTegDaBZHQKPZU8Rtgrp1fZQoaAZoCWgPQwh+p8mMt15jQJSGlFKUaBVN6ANoFkdAo9ms7CBPK3V9lChoBmgJaA9DCIbj+Qyo4VxAlIaUUpRoFU3oA2gWR0Cj2eVcMVk+dX2UKGgGaAloD0MIwLD8+bY2YkCUhpRSlGgVTegDaBZHQKPbwJY1YQt1fZQoaAZoCWgPQwg7cTlegR1gQJSGlFKUaBVN6ANoFkdAo9+zpqynk3V9lChoBmgJaA9DCKTBbW1h5WVAlIaUUpRoFU3oA2gWR0Cj47FUhmoSdX2UKGgGaAloD0MIP+YDAp15ZkCUhpRSlGgVTegDaBZHQKPkvhlUZNx1fZQoaAZoCWgPQwhPeXQjLAJiQJSGlFKUaBVN6ANoFkdAo+U/0TURWnV9lChoBmgJaA9DCBO4dTfPymNAlIaUUpRoFU3oA2gWR0Cj5e8/D+BIdX2UKGgGaAloD0MIFNGvrR/fYkCUhpRSlGgVTegDaBZHQKPmHsrNGEx1fZQoaAZoCWgPQwjvrN12oUxSQJSGlFKUaBVN6ANoFkdAo+0bqMWGh3V9lChoBmgJaA9DCDJaR1UTqGNAlIaUUpRoFU3oA2gWR0Cj7aTkhib2dX2UKGgGaAloD0MIB2ADIsTLXkCUhpRSlGgVTegDaBZHQKPy75uZThp1fZQoaAZoCWgPQwi86ZYd4ntfQJSGlFKUaBVN6ANoFkdAo/OacTakAXV9lChoBmgJaA9DCNMwfETMhGJAlIaUUpRoFU3oA2gWR0Cj9oY4yXUpdX2UKGgGaAloD0MIN6W8VkLrXUCUhpRSlGgVTegDaBZHQKP9pbhWHUN1fZQoaAZoCWgPQwg02qokshtkQJSGlFKUaBVN6ANoFkdAo/7pIe5nUXV9lChoBmgJaA9DCCcwndbtFGBAlIaUUpRoFU3oA2gWR0Cj/0ffXPJJdX2UKGgGaAloD0MIAaYMHFCQZECUhpRSlGgVTegDaBZHQKP/g/VRUFV1fZQoaAZoCWgPQwgHz4QmCTBgQJSGlFKUaBVN6ANoFkdApAFu+sYEXHV9lChoBmgJaA9DCM2ueyuSrGJAlIaUUpRoFU3oA2gWR0CkBUyde6ZqdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
"_n_updates": 124,
|
79 |
+
"n_steps": 2048,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
lunar-test/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84829
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff1cf14f0b4cbc996bef85b5941c03e8d55f4469bf5fc692990e47b29cbfee7e
|
3 |
size 84829
|
lunar-test/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:463e10fec40819d9520941f2f7e6aefd5a726bb8b39d2c8895f8cb25717d7e6b
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f9eeb164deb994b9f4d3dcc2a27c1bd872953a9b49c60254ffbf7b37f8b4346
|
3 |
+
size 245118
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 224.73111604783958, "std_reward": 57.8874997599951, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T07:59:36.374689"}
|