RajMoodley
commited on
Commit
•
fc7edf6
1
Parent(s):
a178bca
Initial commit
Browse files- README.md +37 -0
- a2c-PandaPushDense-v2.zip +3 -0
- a2c-PandaPushDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaPushDense-v2/data +94 -0
- a2c-PandaPushDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaPushDense-v2/policy.pth +3 -0
- a2c-PandaPushDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaPushDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPushDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPushDense-v2
|
16 |
+
type: PandaPushDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -6.13 +/- 2.41
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPushDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPushDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaPushDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4408f19272eb249766617ee5dc255073e12b861e852f00db5ef2a267e1ac62d5
|
3 |
+
size 122446
|
a2c-PandaPushDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaPushDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f76f53153a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f76f530d9f0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674583242603698604,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV4m0P1ehCT8afTg9Oo6wv1mFcT8afTg9XehvP1IbTD8afTg90Hi8v6sr/D4afTg9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXo2hvzC34b1nV6syRl9yv/fL179nV6sy91fHvzRPtb9nV6sy5A1Jvzduj79nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAAehco7QdX7vkGdKL9RBcQ97PPZvTR1OL1XibQ/V6EJPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL06jrC/WYVxPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL1d6G8/UhtMPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL3QeLy/qyv8Php9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTuUaA5LBEsShpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 1.4104413 0.5376181 0.04504118]\n [-1.3793404 0.943441 0.04504118]\n [ 0.93713933 0.7972919 0.04504118]\n [-1.4724369 0.49252066 0.04504118]]",
|
60 |
+
"desired_goal": "[[-1.2621267e+00 -1.1021268e-01 1.9946766e-08]\n [-9.4676626e-01 -1.6859120e+00 1.9946766e-08]\n [-1.5573720e+00 -1.4164796e+00 1.9946766e-08]\n [-7.8536820e-01 -1.1205510e+00 1.9946766e-08]]",
|
61 |
+
"observation": "[[ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n 1.4104413 0.5376181 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n -1.3793404 0.943441 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n 0.93713933 0.7972919 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n -1.4724369 0.49252066 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbCEaPQXf/b0K16M8HSMPvr05jrsK16M8sOG2vZnL1L0K16M80PYVvp3N8T0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGrpjPUCgd7wK16M8QesUPRa7/D0K16M8uO7Cva20CT4K16M8sTQNvgcGF7sK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABsIRo9Bd/9vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAdIw++vTmOuwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACw4ba9mcvUvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADQ9hW+nc3xPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 0.03762953 -0.12396053 0.02 ]\n [-0.13978238 -0.00434038 0.02 ]\n [-0.08929765 -0.10390396 0.02 ]\n [-0.14644933 0.11806796 0.02 ]]",
|
71 |
+
"desired_goal": "[[ 0.0555974 -0.01511389 0.02 ]\n [ 0.03635717 0.12340371 0.02 ]\n [-0.09518188 0.13447829 0.02 ]\n [-0.13789631 -0.00230444 0.02 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 3.7629530e-02 -1.2396053e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.3978238e-01 -4.3403790e-03\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -8.9297652e-02 -1.0390396e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.4644933e-01 1.1806796e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZW8p54v1JsCUhpRSlIwBbJRLMowBdJRHQKVaDH93r2R1fZQoaAZoCWgPQwhTCU/o9f8gwJSGlFKUaBVLMmgWR0ClWciCaqjrdX2UKGgGaAloD0MILSeh9IVIKcCUhpRSlGgVSzJoFkdApVmJCQcPv3V9lChoBmgJaA9DCDVj0XR2Ih/AlIaUUpRoFUsyaBZHQKVZSqMm4RV1fZQoaAZoCWgPQwhauoJtxGskwJSGlFKUaBVLMmgWR0ClWxziCJ40dX2UKGgGaAloD0MI7WKa6V53IcCUhpRSlGgVSzJoFkdApVrZPuXu3XV9lChoBmgJaA9DCBA8vr1r+CTAlIaUUpRoFUsyaBZHQKVamdd3Srp1fZQoaAZoCWgPQwjAQubKoDofwJSGlFKUaBVLMmgWR0ClWlt8uzyCdX2UKGgGaAloD0MIU5J1OLrKKcCUhpRSlGgVSzJoFkdApVw3DrJKa3V9lChoBmgJaA9DCJ+OxwxU5hHAlIaUUpRoFUsyaBZHQKVb81Vo6CF1fZQoaAZoCWgPQwgCK4cW2T4XwJSGlFKUaBVLMmgWR0ClW7PpIMBqdX2UKGgGaAloD0MI3nL1Y5M0J8CUhpRSlGgVSzJoFkdApVt1nTRYzXV9lChoBmgJaA9DCKhzRSkhoCjAlIaUUpRoFUsyaBZHQKVdS495hSd1fZQoaAZoCWgPQwhBKVq5F7AnwJSGlFKUaBVLMmgWR0ClXQe+M6zWdX2UKGgGaAloD0MIRYKpZtaCFMCUhpRSlGgVSzJoFkdApVzIWznienV9lChoBmgJaA9DCHyakxeZcCXAlIaUUpRoFUsyaBZHQKVcihmoR7J1fZQoaAZoCWgPQwiCqzyBsJP2v5SGlFKUaBVLMmgWR0ClXlaJhvzfdX2UKGgGaAloD0MIYOemzTgVLMCUhpRSlGgVSzJoFkdApV4Sol2NenV9lChoBmgJaA9DCM+fNqrTASTAlIaUUpRoFUsyaBZHQKVd02YOUdJ1fZQoaAZoCWgPQwjzWDMyyLUgwJSGlFKUaBVLMmgWR0ClXZVX/5tWdX2UKGgGaAloD0MIOjsZHCUfIsCUhpRSlGgVSzJoFkdApV9nzreImHV9lChoBmgJaA9DCMDLDBtlvSbAlIaUUpRoFUsyaBZHQKVfJB2OhkB1fZQoaAZoCWgPQwhO7+L9uMUnwJSGlFKUaBVLMmgWR0ClXuTRIBikdX2UKGgGaAloD0MISzlf7L0YB8CUhpRSlGgVSzJoFkdApV6mdVea8nV9lChoBmgJaA9DCIqO5PIfwiPAlIaUUpRoFUsyaBZHQKVgkcUdq+J1fZQoaAZoCWgPQwhLIvsgy+ogwJSGlFKUaBVLMmgWR0ClYE4NAkcCdX2UKGgGaAloD0MIt3u5T466KcCUhpRSlGgVSzJoFkdApWAO4b0e2nV9lChoBmgJaA9DCP+uz5z18SHAlIaUUpRoFUsyaBZHQKVf0H0se4l1fZQoaAZoCWgPQwhTdY9srpYwwJSGlFKUaBVLMmgWR0ClYaFoL5RCdX2UKGgGaAloD0MIb9V1qKak9b+UhpRSlGgVSzJoFkdApWFdkxyn1nV9lChoBmgJaA9DCLN6h9uh8SXAlIaUUpRoFUsyaBZHQKVhHjNpudh1fZQoaAZoCWgPQwgO9FDbhqEQwJSGlFKUaBVLMmgWR0ClYN+67NB4dX2UKGgGaAloD0MISPlJtU+nE8CUhpRSlGgVSzJoFkdApWLIV9F4LXV9lChoBmgJaA9DCMvZO6OtygfAlIaUUpRoFUsyaBZHQKVihOafBep1fZQoaAZoCWgPQwhFuMmoMuQjwJSGlFKUaBVLMmgWR0ClYkX5FgDzdX2UKGgGaAloD0MI4KEo0CfyHMCUhpRSlGgVSzJoFkdApWIHjn3cpXV9lChoBmgJaA9DCCBe1y/Y1SvAlIaUUpRoFUsyaBZHQKVkMluWKMx1fZQoaAZoCWgPQwird7gdGhbvv5SGlFKUaBVLMmgWR0ClY+65Gz8hdX2UKGgGaAloD0MIG7yvyoXWM8CUhpRSlGgVSzJoFkdApWOvgYP5HnV9lChoBmgJaA9DCCfAsPz5tvG/lIaUUpRoFUsyaBZHQKVjcUlAu7J1fZQoaAZoCWgPQwhZ+Ppal9IgwJSGlFKUaBVLMmgWR0ClZU2+XZ5BdX2UKGgGaAloD0MIVrd6TnrfBsCUhpRSlGgVSzJoFkdApWUKHwgDBHV9lChoBmgJaA9DCMCw/Pm2oBLAlIaUUpRoFUsyaBZHQKVkytlqagF1fZQoaAZoCWgPQwhAbOnRVI8QwJSGlFKUaBVLMmgWR0ClZIxNIsiCdX2UKGgGaAloD0MI8Ui8PJ37HsCUhpRSlGgVSzJoFkdApWZgVKwpv3V9lChoBmgJaA9DCNMXQs77nwzAlIaUUpRoFUsyaBZHQKVmHKbKA8V1fZQoaAZoCWgPQwjLSSh9IUQawJSGlFKUaBVLMmgWR0ClZd1dX1aodX2UKGgGaAloD0MI3zMSoRHsHcCUhpRSlGgVSzJoFkdApWWe4ZuQ63V9lChoBmgJaA9DCB13SgfrbyjAlIaUUpRoFUsyaBZHQKVncfapPyl1fZQoaAZoCWgPQwirdeJyvBogwJSGlFKUaBVLMmgWR0ClZy6IWP92dX2UKGgGaAloD0MIY5tUNNb+EsCUhpRSlGgVSzJoFkdApWbvWtlqanV9lChoBmgJaA9DCKiq0EAsuyPAlIaUUpRoFUsyaBZHQKVmsRB/qgR1fZQoaAZoCWgPQwiiYweVuN4SwJSGlFKUaBVLMmgWR0ClaIAjhUBGdX2UKGgGaAloD0MI83FtqBgXJMCUhpRSlGgVSzJoFkdApWg8bxVhkXV9lChoBmgJaA9DCFSthVlopxPAlIaUUpRoFUsyaBZHQKVn/SF49ox1fZQoaAZoCWgPQwi22O2zypQswJSGlFKUaBVLMmgWR0ClZ77Rv3rVdX2UKGgGaAloD0MIA5ZcxeI3GsCUhpRSlGgVSzJoFkdApWmXOryUcHV9lChoBmgJaA9DCKVMamgDEA7AlIaUUpRoFUsyaBZHQKVpU1TBInV1fZQoaAZoCWgPQwgMdVjhllciwJSGlFKUaBVLMmgWR0ClaRQz1scidX2UKGgGaAloD0MIuAchIF/CBMCUhpRSlGgVSzJoFkdApWjV50KZ2XV9lChoBmgJaA9DCMYxkj1CLSPAlIaUUpRoFUsyaBZHQKVqrmjj7yh1fZQoaAZoCWgPQwj8AKQ2cV4wwJSGlFKUaBVLMmgWR0Clamq3EyckdX2UKGgGaAloD0MIyjMvh90nFsCUhpRSlGgVSzJoFkdApWoreQ+2VnV9lChoBmgJaA9DCOi+nNmuICXAlIaUUpRoFUsyaBZHQKVp7RpDeCV1fZQoaAZoCWgPQwhsPxnjw8wZwJSGlFKUaBVLMmgWR0Cla73kYGdJdX2UKGgGaAloD0MI290DdF9uIsCUhpRSlGgVSzJoFkdApWt6LhrFfnV9lChoBmgJaA9DCGe0VUlkXw7AlIaUUpRoFUsyaBZHQKVrOsbvPTp1fZQoaAZoCWgPQwg0ZhL1gi8owJSGlFKUaBVLMmgWR0Clavx/ViF1dX2UKGgGaAloD0MIwa27earTH8CUhpRSlGgVSzJoFkdApWzKz7di2HV9lChoBmgJaA9DCJliDoKOthvAlIaUUpRoFUsyaBZHQKVshwqAjIJ1fZQoaAZoCWgPQwjjUpW2uOYHwJSGlFKUaBVLMmgWR0ClbEeiaiK0dX2UKGgGaAloD0MITIxl+iUiJ8CUhpRSlGgVSzJoFkdApWwJTn7pFHV9lChoBmgJaA9DCMO8x5km3B7AlIaUUpRoFUsyaBZHQKVt0Q6IWP91fZQoaAZoCWgPQwiCAYQPJQogwJSGlFKUaBVLMmgWR0ClbY1QhwERdX2UKGgGaAloD0MIoP1IERnWBcCUhpRSlGgVSzJoFkdApW1OD6Fds3V9lChoBmgJaA9DCLYODvYmhiHAlIaUUpRoFUsyaBZHQKVtD7el9Bt1fZQoaAZoCWgPQwhkrDb/rxoNwJSGlFKUaBVLMmgWR0ClbuUD+zdDdX2UKGgGaAloD0MIKSDtf4D1C8CUhpRSlGgVSzJoFkdApW6hRoAXEnV9lChoBmgJaA9DCBhbCHJQgvy/lIaUUpRoFUsyaBZHQKVuYhib2Dh1fZQoaAZoCWgPQwjkgjP4+7USwJSGlFKUaBVLMmgWR0ClbiPQF9rodX2UKGgGaAloD0MIbarukc21E8CUhpRSlGgVSzJoFkdApW//IEKVp3V9lChoBmgJaA9DCPYn8bkT7PG/lIaUUpRoFUsyaBZHQKVvu150KZ51fZQoaAZoCWgPQwhTsTGvI84FwJSGlFKUaBVLMmgWR0Clb3wgDA8CdX2UKGgGaAloD0MIRML3/gYtDMCUhpRSlGgVSzJoFkdApW89ovi97HV9lChoBmgJaA9DCLHDmPT3Yh3AlIaUUpRoFUsyaBZHQKVxDQ40dil1fZQoaAZoCWgPQwjO+pRjsugbwJSGlFKUaBVLMmgWR0ClcMlDWsijdX2UKGgGaAloD0MIVP1K58ObI8CUhpRSlGgVSzJoFkdApXCJ8D0UXnV9lChoBmgJaA9DCF1OCYhJmCDAlIaUUpRoFUsyaBZHQKVwS6T4cm11fZQoaAZoCWgPQwj9wFWeQMArwJSGlFKUaBVLMmgWR0ClchgOz6acdX2UKGgGaAloD0MI4pNOJJjaF8CUhpRSlGgVSzJoFkdApXHURaouPHV9lChoBmgJaA9DCLYuNUI/eybAlIaUUpRoFUsyaBZHQKVxlRhMJyB1fZQoaAZoCWgPQwhHPUSjO4jfv5SGlFKUaBVLMmgWR0ClcVbCBPKudX2UKGgGaAloD0MIE4HqH0RSB8CUhpRSlGgVSzJoFkdApXMkytV7yHV9lChoBmgJaA9DCG1VEtkHmQ3AlIaUUpRoFUsyaBZHQKVy4Qr+YMR1fZQoaAZoCWgPQwiamZmZmdkqwJSGlFKUaBVLMmgWR0ClcqHJ1aGIdX2UKGgGaAloD0MIt7QaEvfYA8CUhpRSlGgVSzJoFkdApXJjU/fO2XV9lChoBmgJaA9DCMfa39kePSDAlIaUUpRoFUsyaBZHQKV0Mi6g/Tt1fZQoaAZoCWgPQwisqwK1GLQiwJSGlFKUaBVLMmgWR0Clc+5aFEiMdX2UKGgGaAloD0MI4pS5+UaUCcCUhpRSlGgVSzJoFkdApXOvFo+OfnV9lChoBmgJaA9DCOymlNdKmB3AlIaUUpRoFUsyaBZHQKVzcMtsen11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaPushDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0a3527c26a9062354af04f1f53b1711666149c8ff125ec9c656c43a7333a7e7
|
3 |
+
size 50878
|
a2c-PandaPushDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e17a2b0a5b2676a69aa0cae7115c0a999c9ed966b385ed89edfa2f5d4fc4b313
|
3 |
+
size 52158
|
a2c-PandaPushDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaPushDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f76f53153a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f76f530d9f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVygMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLEoWUaBpoHSiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLEoWUaCB0lFKUaCNoHSiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLEoWUaCB0lFKUaChoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDJoHSiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCxLEoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10. -10.\n -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.], (18,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674583242603698604, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAV4m0P1ehCT8afTg9Oo6wv1mFcT8afTg9XehvP1IbTD8afTg90Hi8v6sr/D4afTg9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXo2hvzC34b1nV6syRl9yv/fL179nV6sy91fHvzRPtb9nV6sy5A1Jvzduj79nV6sylGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAAAehco7QdX7vkGdKL9RBcQ97PPZvTR1OL1XibQ/V6EJPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL06jrC/WYVxPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL1d6G8/UhtMPxp9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTsehco7QdX7vkGdKL9RBcQ97PPZvTR1OL3QeLy/qyv8Php9OD1wc+e7niuCvHO0+bot+5s8kyCEPM3unTyYYSm7y13uu9f1FTuUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.4104413 0.5376181 0.04504118]\n [-1.3793404 0.943441 0.04504118]\n [ 0.93713933 0.7972919 0.04504118]\n [-1.4724369 0.49252066 0.04504118]]", "desired_goal": "[[-1.2621267e+00 -1.1021268e-01 1.9946766e-08]\n [-9.4676626e-01 -1.6859120e+00 1.9946766e-08]\n [-1.5573720e+00 -1.4164796e+00 1.9946766e-08]\n [-7.8536820e-01 -1.1205510e+00 1.9946766e-08]]", "observation": "[[ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n 1.4104413 0.5376181 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n -1.3793404 0.943441 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n 0.93713933 0.7972919 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]\n [ 0.00618042 -0.49186137 -0.6586495 0.09571327 -0.10642228 -0.04503365\n -1.4724369 0.49252066 0.04504118 -0.00706332 -0.01588994 -0.0019051\n 0.01904067 0.01612881 0.01927891 -0.00258455 -0.00727436 0.00228821]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbCEaPQXf/b0K16M8HSMPvr05jrsK16M8sOG2vZnL1L0K16M80PYVvp3N8T0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGrpjPUCgd7wK16M8QesUPRa7/D0K16M8uO7Cva20CT4K16M8sTQNvgcGF7sK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWIAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABsIRo9Bd/9vQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAdIw++vTmOuwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACw4ba9mcvUvQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADQ9hW+nc3xPQrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaA5LBEsShpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.03762953 -0.12396053 0.02 ]\n [-0.13978238 -0.00434038 0.02 ]\n [-0.08929765 -0.10390396 0.02 ]\n [-0.14644933 0.11806796 0.02 ]]", "desired_goal": "[[ 0.0555974 -0.01511389 0.02 ]\n [ 0.03635717 0.12340371 0.02 ]\n [-0.09518188 0.13447829 0.02 ]\n [-0.13789631 -0.00230444 0.02 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 3.7629530e-02 -1.2396053e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.3978238e-01 -4.3403790e-03\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -8.9297652e-02 -1.0390396e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 -1.4644933e-01 1.1806796e-01\n 2.0000000e-02 0.0000000e+00 -0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZW8p54v1JsCUhpRSlIwBbJRLMowBdJRHQKVaDH93r2R1fZQoaAZoCWgPQwhTCU/o9f8gwJSGlFKUaBVLMmgWR0ClWciCaqjrdX2UKGgGaAloD0MILSeh9IVIKcCUhpRSlGgVSzJoFkdApVmJCQcPv3V9lChoBmgJaA9DCDVj0XR2Ih/AlIaUUpRoFUsyaBZHQKVZSqMm4RV1fZQoaAZoCWgPQwhauoJtxGskwJSGlFKUaBVLMmgWR0ClWxziCJ40dX2UKGgGaAloD0MI7WKa6V53IcCUhpRSlGgVSzJoFkdApVrZPuXu3XV9lChoBmgJaA9DCBA8vr1r+CTAlIaUUpRoFUsyaBZHQKVamdd3Srp1fZQoaAZoCWgPQwjAQubKoDofwJSGlFKUaBVLMmgWR0ClWlt8uzyCdX2UKGgGaAloD0MIU5J1OLrKKcCUhpRSlGgVSzJoFkdApVw3DrJKa3V9lChoBmgJaA9DCJ+OxwxU5hHAlIaUUpRoFUsyaBZHQKVb81Vo6CF1fZQoaAZoCWgPQwgCK4cW2T4XwJSGlFKUaBVLMmgWR0ClW7PpIMBqdX2UKGgGaAloD0MI3nL1Y5M0J8CUhpRSlGgVSzJoFkdApVt1nTRYzXV9lChoBmgJaA9DCKhzRSkhoCjAlIaUUpRoFUsyaBZHQKVdS495hSd1fZQoaAZoCWgPQwhBKVq5F7AnwJSGlFKUaBVLMmgWR0ClXQe+M6zWdX2UKGgGaAloD0MIRYKpZtaCFMCUhpRSlGgVSzJoFkdApVzIWznienV9lChoBmgJaA9DCHyakxeZcCXAlIaUUpRoFUsyaBZHQKVcihmoR7J1fZQoaAZoCWgPQwiCqzyBsJP2v5SGlFKUaBVLMmgWR0ClXlaJhvzfdX2UKGgGaAloD0MIYOemzTgVLMCUhpRSlGgVSzJoFkdApV4Sol2NenV9lChoBmgJaA9DCM+fNqrTASTAlIaUUpRoFUsyaBZHQKVd02YOUdJ1fZQoaAZoCWgPQwjzWDMyyLUgwJSGlFKUaBVLMmgWR0ClXZVX/5tWdX2UKGgGaAloD0MIOjsZHCUfIsCUhpRSlGgVSzJoFkdApV9nzreImHV9lChoBmgJaA9DCMDLDBtlvSbAlIaUUpRoFUsyaBZHQKVfJB2OhkB1fZQoaAZoCWgPQwhO7+L9uMUnwJSGlFKUaBVLMmgWR0ClXuTRIBikdX2UKGgGaAloD0MISzlf7L0YB8CUhpRSlGgVSzJoFkdApV6mdVea8nV9lChoBmgJaA9DCIqO5PIfwiPAlIaUUpRoFUsyaBZHQKVgkcUdq+J1fZQoaAZoCWgPQwhLIvsgy+ogwJSGlFKUaBVLMmgWR0ClYE4NAkcCdX2UKGgGaAloD0MIt3u5T466KcCUhpRSlGgVSzJoFkdApWAO4b0e2nV9lChoBmgJaA9DCP+uz5z18SHAlIaUUpRoFUsyaBZHQKVf0H0se4l1fZQoaAZoCWgPQwhTdY9srpYwwJSGlFKUaBVLMmgWR0ClYaFoL5RCdX2UKGgGaAloD0MIb9V1qKak9b+UhpRSlGgVSzJoFkdApWFdkxyn1nV9lChoBmgJaA9DCLN6h9uh8SXAlIaUUpRoFUsyaBZHQKVhHjNpudh1fZQoaAZoCWgPQwgO9FDbhqEQwJSGlFKUaBVLMmgWR0ClYN+67NB4dX2UKGgGaAloD0MISPlJtU+nE8CUhpRSlGgVSzJoFkdApWLIV9F4LXV9lChoBmgJaA9DCMvZO6OtygfAlIaUUpRoFUsyaBZHQKVihOafBep1fZQoaAZoCWgPQwhFuMmoMuQjwJSGlFKUaBVLMmgWR0ClYkX5FgDzdX2UKGgGaAloD0MI4KEo0CfyHMCUhpRSlGgVSzJoFkdApWIHjn3cpXV9lChoBmgJaA9DCCBe1y/Y1SvAlIaUUpRoFUsyaBZHQKVkMluWKMx1fZQoaAZoCWgPQwird7gdGhbvv5SGlFKUaBVLMmgWR0ClY+65Gz8hdX2UKGgGaAloD0MIG7yvyoXWM8CUhpRSlGgVSzJoFkdApWOvgYP5HnV9lChoBmgJaA9DCCfAsPz5tvG/lIaUUpRoFUsyaBZHQKVjcUlAu7J1fZQoaAZoCWgPQwhZ+Ppal9IgwJSGlFKUaBVLMmgWR0ClZU2+XZ5BdX2UKGgGaAloD0MIVrd6TnrfBsCUhpRSlGgVSzJoFkdApWUKHwgDBHV9lChoBmgJaA9DCMCw/Pm2oBLAlIaUUpRoFUsyaBZHQKVkytlqagF1fZQoaAZoCWgPQwhAbOnRVI8QwJSGlFKUaBVLMmgWR0ClZIxNIsiCdX2UKGgGaAloD0MI8Ui8PJ37HsCUhpRSlGgVSzJoFkdApWZgVKwpv3V9lChoBmgJaA9DCNMXQs77nwzAlIaUUpRoFUsyaBZHQKVmHKbKA8V1fZQoaAZoCWgPQwjLSSh9IUQawJSGlFKUaBVLMmgWR0ClZd1dX1aodX2UKGgGaAloD0MI3zMSoRHsHcCUhpRSlGgVSzJoFkdApWWe4ZuQ63V9lChoBmgJaA9DCB13SgfrbyjAlIaUUpRoFUsyaBZHQKVncfapPyl1fZQoaAZoCWgPQwirdeJyvBogwJSGlFKUaBVLMmgWR0ClZy6IWP92dX2UKGgGaAloD0MIY5tUNNb+EsCUhpRSlGgVSzJoFkdApWbvWtlqanV9lChoBmgJaA9DCKiq0EAsuyPAlIaUUpRoFUsyaBZHQKVmsRB/qgR1fZQoaAZoCWgPQwiiYweVuN4SwJSGlFKUaBVLMmgWR0ClaIAjhUBGdX2UKGgGaAloD0MI83FtqBgXJMCUhpRSlGgVSzJoFkdApWg8bxVhkXV9lChoBmgJaA9DCFSthVlopxPAlIaUUpRoFUsyaBZHQKVn/SF49ox1fZQoaAZoCWgPQwi22O2zypQswJSGlFKUaBVLMmgWR0ClZ77Rv3rVdX2UKGgGaAloD0MIA5ZcxeI3GsCUhpRSlGgVSzJoFkdApWmXOryUcHV9lChoBmgJaA9DCKVMamgDEA7AlIaUUpRoFUsyaBZHQKVpU1TBInV1fZQoaAZoCWgPQwgMdVjhllciwJSGlFKUaBVLMmgWR0ClaRQz1scidX2UKGgGaAloD0MIuAchIF/CBMCUhpRSlGgVSzJoFkdApWjV50KZ2XV9lChoBmgJaA9DCMYxkj1CLSPAlIaUUpRoFUsyaBZHQKVqrmjj7yh1fZQoaAZoCWgPQwj8AKQ2cV4wwJSGlFKUaBVLMmgWR0Clamq3EyckdX2UKGgGaAloD0MIyjMvh90nFsCUhpRSlGgVSzJoFkdApWoreQ+2VnV9lChoBmgJaA9DCOi+nNmuICXAlIaUUpRoFUsyaBZHQKVp7RpDeCV1fZQoaAZoCWgPQwhsPxnjw8wZwJSGlFKUaBVLMmgWR0Cla73kYGdJdX2UKGgGaAloD0MI290DdF9uIsCUhpRSlGgVSzJoFkdApWt6LhrFfnV9lChoBmgJaA9DCGe0VUlkXw7AlIaUUpRoFUsyaBZHQKVrOsbvPTp1fZQoaAZoCWgPQwg0ZhL1gi8owJSGlFKUaBVLMmgWR0Clavx/ViF1dX2UKGgGaAloD0MIwa27earTH8CUhpRSlGgVSzJoFkdApWzKz7di2HV9lChoBmgJaA9DCJliDoKOthvAlIaUUpRoFUsyaBZHQKVshwqAjIJ1fZQoaAZoCWgPQwjjUpW2uOYHwJSGlFKUaBVLMmgWR0ClbEeiaiK0dX2UKGgGaAloD0MITIxl+iUiJ8CUhpRSlGgVSzJoFkdApWwJTn7pFHV9lChoBmgJaA9DCMO8x5km3B7AlIaUUpRoFUsyaBZHQKVt0Q6IWP91fZQoaAZoCWgPQwiCAYQPJQogwJSGlFKUaBVLMmgWR0ClbY1QhwERdX2UKGgGaAloD0MIoP1IERnWBcCUhpRSlGgVSzJoFkdApW1OD6Fds3V9lChoBmgJaA9DCLYODvYmhiHAlIaUUpRoFUsyaBZHQKVtD7el9Bt1fZQoaAZoCWgPQwhkrDb/rxoNwJSGlFKUaBVLMmgWR0ClbuUD+zdDdX2UKGgGaAloD0MIKSDtf4D1C8CUhpRSlGgVSzJoFkdApW6hRoAXEnV9lChoBmgJaA9DCBhbCHJQgvy/lIaUUpRoFUsyaBZHQKVuYhib2Dh1fZQoaAZoCWgPQwjkgjP4+7USwJSGlFKUaBVLMmgWR0ClbiPQF9rodX2UKGgGaAloD0MIbarukc21E8CUhpRSlGgVSzJoFkdApW//IEKVp3V9lChoBmgJaA9DCPYn8bkT7PG/lIaUUpRoFUsyaBZHQKVvu150KZ51fZQoaAZoCWgPQwhTsTGvI84FwJSGlFKUaBVLMmgWR0Clb3wgDA8CdX2UKGgGaAloD0MIRML3/gYtDMCUhpRSlGgVSzJoFkdApW89ovi97HV9lChoBmgJaA9DCLHDmPT3Yh3AlIaUUpRoFUsyaBZHQKVxDQ40dil1fZQoaAZoCWgPQwjO+pRjsugbwJSGlFKUaBVLMmgWR0ClcMlDWsijdX2UKGgGaAloD0MIVP1K58ObI8CUhpRSlGgVSzJoFkdApXCJ8D0UXnV9lChoBmgJaA9DCF1OCYhJmCDAlIaUUpRoFUsyaBZHQKVwS6T4cm11fZQoaAZoCWgPQwj9wFWeQMArwJSGlFKUaBVLMmgWR0ClchgOz6acdX2UKGgGaAloD0MI4pNOJJjaF8CUhpRSlGgVSzJoFkdApXHURaouPHV9lChoBmgJaA9DCLYuNUI/eybAlIaUUpRoFUsyaBZHQKVxlRhMJyB1fZQoaAZoCWgPQwhHPUSjO4jfv5SGlFKUaBVLMmgWR0ClcVbCBPKudX2UKGgGaAloD0MIE4HqH0RSB8CUhpRSlGgVSzJoFkdApXMkytV7yHV9lChoBmgJaA9DCG1VEtkHmQ3AlIaUUpRoFUsyaBZHQKVy4Qr+YMR1fZQoaAZoCWgPQwiamZmZmdkqwJSGlFKUaBVLMmgWR0ClcqHJ1aGIdX2UKGgGaAloD0MIt7QaEvfYA8CUhpRSlGgVSzJoFkdApXJjU/fO2XV9lChoBmgJaA9DCMfa39kePSDAlIaUUpRoFUsyaBZHQKV0Mi6g/Tt1fZQoaAZoCWgPQwisqwK1GLQiwJSGlFKUaBVLMmgWR0Clc+5aFEiMdX2UKGgGaAloD0MI4pS5+UaUCcCUhpRSlGgVSzJoFkdApXOvFo+OfnV9lChoBmgJaA9DCOymlNdKmB3AlIaUUpRoFUsyaBZHQKVzcMtsen11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (783 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -6.130083225667477, "std_reward": 2.4089337408692457, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T18:47:08.426818"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06016c5e62836c7dbc5a62ef9e7e13f5e8a266dcbcb3ef86ee5166b91abae6fa
|
3 |
+
size 3536
|