File size: 1,840 Bytes
4e16a0c
 
 
45b7999
 
 
 
 
4e16a0c
4d2144d
45b7999
 
 
 
 
 
 
 
 
 
 
 
 
 
4e16a0c
 
45b7999
 
4e16a0c
4d2144d
4e16a0c
45b7999
4e16a0c
45b7999
 
4e16a0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b7999
 
 
 
 
 
 
4e16a0c
 
 
45b7999
 
 
 
 
4e16a0c
 
 
 
 
45b7999
4e16a0c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: bert-fine-tuned-cola
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: cola
      split: validation
      args: cola
    metrics:
    - name: Matthews Correlation
      type: matthews_correlation
      value: 0.6107419227947289
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-fine-tuned-cola

This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8073
- Matthews Correlation: 0.6107

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.4681        | 1.0   | 1069 | 0.5613          | 0.4892               |
| 0.321         | 2.0   | 2138 | 0.6681          | 0.5851               |
| 0.1781        | 3.0   | 3207 | 0.8073          | 0.6107               |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2