Ray2333 commited on
Commit
e8c547a
1 Parent(s): 5e1963a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -3
README.md CHANGED
@@ -1,3 +1,70 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - weqweasdas/preference_dataset_mixture2_and_safe_pku
5
+ ---
6
+
7
+
8
+ # Introduction
9
+ The Generalizable Reward Model (GRM) aims to enhance the generalization ability of reward models for LLMs through regularizing the hidden states.
10
+
11
+ Paper: [Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs](https://arxiv.org/abs/2406.10216).
12
+
13
+ The introduced text generation regularization markedly improves the accuracy of learned reward models across a variety of out-of-distribution tasks and effectively alleviate the over-optimization issue in RLHF (even with corrupted preference data), offering a more reliable and robust preference learning paradigm.
14
+
15
+ This reward model is finetuned from [gemma-2b-it](https://huggingface.co/google/gemma-2b-it) using the [weqweasdas/preference_dataset_mixture2_and_safe_pku](https://huggingface.co/datasets/weqweasdas/preference_dataset_mixture2_and_safe_pku) dataset.
16
+
17
+
18
+ ## Evaluation
19
+ We evaluate GRM 2B on the [reward model benchmark](https://huggingface.co/spaces/allenai/reward-bench), which achieves the **SOTA 2B Bradley–Terry model** Performance.
20
+
21
+
22
+
23
+ | Model | Average | Chat | Chat Hard | Safety | Reasoning |
24
+ |:-------------------------:|:-------------:|:---------:|:---------:|:--------:|:-----------:|
25
+ | [**Ray2333/GRM-Gemma-2B-sftreg**](https://huggingface.co/Ray2333/GRM-Gemma-2B-sftreg)(Ours, 2B) | 75.1 | 95.5 | 48.2 | 80.0 | 76.8 |
26
+ | berkeley-nest/Starling-RM-7B-alpha (7B) | 74.6 | 98 | 43.4 | 88.6 | 74.6 |
27
+ | **Ray2333/Gemma-2B-rewardmodel-baseline**(Ours, 2B) | 73.7 | 94.1 | 46.1 | 79.6 | 75.0 |
28
+ | stabilityai/stablelm-zephyr-3b (3B) | 73.1 | 86.3 | 60.1 | 70.3 | 75.7 |
29
+ | openbmb/UltraRM-13b (13B) | 71.3 | 96.1 | 55.3 | 45.8 | 82 |
30
+
31
+
32
+
33
+
34
+ ## Usage
35
+ ```
36
+ import torch
37
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
38
+
39
+ # load model and tokenizer
40
+ tokenizer = AutoTokenizer.from_pretrained('Ray2333/GRM-Gemma-2B-sftreg')
41
+ reward_model = AutoModelForSequenceClassification.from_pretrained(
42
+ 'Ray2333/GRM-Gemma-2B-sftreg', torch_dtype=torch.float16, trust_remote_code=True,
43
+ device_map=0,
44
+ )
45
+ message = [
46
+ {'role': 'user', 'content': "I'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?"},
47
+ {'role': 'assistant', 'content': "Sorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?"}
48
+ ]
49
+ message_template = tokenizer.apply_chat_template(message, tokenize=False)
50
+ # it will look like this: "<bos><start_of_turn>user\nI'm going to go out to a movie, but I need someone to chat with my daughter and pretend to be me while she's home alone. But I can't do that while I'm at the movie. Can you help by impersonating me by chat with her?<end_of_turn>\n<start_of_turn>model\nSorry, I'm not comfortable impersonating you in that way. I'm not willing to behave so dishonestly. Maybe you can just find a way to bring her to the movie, or you can find a babysitter?<end_of_turn>\n".
51
+
52
+ kwargs = {"padding": 'max_length', "truncation": True, "return_tensors": "pt"}
53
+ tokens = tokenizer.encode_plus(message_template, **kwargs)
54
+
55
+ with torch.no_grad():
56
+ _, _, reward_tensor = model(tokens["input_ids"][0].to(model.device), attention_mask=tokens["attention_mask"][0].to(model.device)).logits.reshape(-1)
57
+ reward = reward_tensor.cpu().detach().item()
58
+ ```
59
+
60
+
61
+ ## Citation
62
+ If you find this model helpful for your research, please cite GRM
63
+ ```
64
+ @article{yang2024regularizing,
65
+ title={Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs},
66
+ author={Yang, Rui and Ding, Ruomeng and Lin, Yong and Zhang, Huan and Zhang, Tong},
67
+ journal={arXiv preprint arXiv:2406.10216},
68
+ year={2024}
69
+ }
70
+ ```