Text Classification
Safetensors
gemma2
custom_code
File size: 8,284 Bytes
b65f8a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Modified from Huggingface trl package AutoModelForCausalLMWithValueHead class
# Enabling better customization for generalizable reward modeling
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM
from trl import PreTrainedModelWrapper


class ValueHead(nn.Module):
    def __init__(self, config, **kwargs):
        super().__init__()
        if not hasattr(config, "summary_dropout_prob"):
            summary_dropout_prob = kwargs.pop("summary_dropout_prob", 0.1)
        else:
            summary_dropout_prob = config.summary_dropout_prob

        self.dropout = nn.Dropout(summary_dropout_prob) if summary_dropout_prob else nn.Identity()

        # some models such as OPT have a projection layer before the word embeddings - e.g. OPT-350m
        if hasattr(config, "hidden_size"):
            hidden_size = config.hidden_size
        if hasattr(config, "word_embed_proj_dim"):
            hidden_size = config.word_embed_proj_dim
        elif hasattr(config, "is_encoder_decoder"):
            if config.is_encoder_decoder and hasattr(config, "decoder"):
                if hasattr(config.decoder, "hidden_size"):
                    hidden_size = config.decoder.hidden_size

        # get vhead config
        if hasattr(config, "vhead_layer_type"): # config from json first
            self.layer_type = config.vhead_layer_type
        else:
            self.layer_type = kwargs.pop("vhead_layer_type", 'mlp')
        if hasattr(config, 'vhead_num_neurons'):
            num_neurons = config.vhead_num_neurons
        else:
            num_neurons = kwargs.pop("vhead_num_neurons", 1024)
        if hasattr(config, 'vhead_num_layers'):
            num_layers = config.vhead_num_layers
        else:
            num_layers = kwargs.pop("vhead_num_layers", 1)

        if self.layer_type == 'linear':
            self.summary = nn.Linear(hidden_size, 1)
        else:
            module_lis = []
            input_neurons = hidden_size
            for i in range(num_layers):
                module_lis.extend([nn.Linear(input_neurons, num_neurons), nn.ReLU()])
                input_neurons = num_neurons
                
            module_lis.append(nn.Linear(num_neurons, 1))
            self.summary = nn.Sequential(*module_lis)
        self.flatten = nn.Flatten()

    def forward(self, hidden_states):
        output = self.dropout(hidden_states)
        if (self.layer_type == 'linear' and output.dtype != self.summary.weight.dtype):
            output = output.to(self.summary.weight.dtype)
        elif (self.layer_type != 'linear' and output.dtype != self.summary[0].weight.dtype):
            output = output.to(self.summary[0].weight.dtype)

        output = self.summary(output)
        return output


class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
    transformers_parent_class = AutoModelForCausalLM
    lm_head_namings = ["lm_head", "embed_out"]
    supported_args = (
        "summary_dropout_prob",
        "v_head_initializer_range",
        "v_head_init_strategy",
        "layer_type",
        'num_neurons',
        'num_layers',
    )

    def __init__(self, pretrained_model, **kwargs):
        r"""
        Initializes the model.
        """
        super().__init__(pretrained_model, **kwargs)
        v_head_kwargs, _, _ = self._split_kwargs(kwargs)

        if not any(hasattr(self.pretrained_model, attribute) for attribute in self.lm_head_namings):
            raise ValueError("The model does not have a language model head, please use a model that has one.")

        self.v_head = ValueHead(self.pretrained_model.config, **v_head_kwargs)
        self._init_weights(**v_head_kwargs)

    def _init_weights(self, **kwargs):
        r"""
        Initializes the weights of the value head. 
        """
        initializer_range = kwargs.pop("v_head_initializer_range", 0.2)
        # random init by default
        init_strategy = kwargs.pop("v_head_init_strategy", None)
        if init_strategy is None:
            # do nothing
            pass
        elif init_strategy == "normal":
            self.v_head.summary.weight.data.normal_(mean=0.0, std=initializer_range)
            self.v_head.summary.bias.data.zero_()

    def forward(
        self,
        input_ids=None,
        past_key_values=None,
        attention_mask=None,
        **kwargs,
    ):
        kwargs["output_hidden_states"] = True  # this had already been set in the LORA / PEFT examples
        kwargs["past_key_values"] = past_key_values

        if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING":
            kwargs.pop("past_key_values")

        base_model_output = self.pretrained_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            **kwargs,
        )

        last_hidden_state = base_model_output.hidden_states[-1]
        lm_logits = base_model_output.logits
        loss = base_model_output.loss

        if (hasattr(self.v_head.summary, 'weight') and last_hidden_state.device != self.v_head.summary.weight.device):
            last_hidden_state = last_hidden_state.to(self.v_head.summary.weight.device)
        elif not hasattr(self.v_head.summary, 'weight') and (last_hidden_state.device != self.v_head.summary[0].weight.device):
            last_hidden_state = last_hidden_state.to(self.v_head.summary[0].weight.device)
        
        # use the last token value as reward
        if torch.any(attention_mask[:, 0] == 0):
            # left padding
            last_index = attention_mask.shape[-1] - 1
        else:
            # right padding
            last_index = attention_mask.sum(dim=-1) - 1
        value = self.v_head(last_hidden_state).squeeze(-1)[torch.arange(len(last_hidden_state)), last_index]

        # force upcast in fp32 if logits are in half-precision
        if lm_logits.dtype != torch.float32:
            lm_logits = lm_logits.float()

        return (lm_logits, loss, value)

    def generate(self, *args, **kwargs):
        return self.pretrained_model.generate(*args, **kwargs)

    def state_dict(self, *args, **kwargs):
        pretrained_model_state_dict = self.pretrained_model.state_dict(*args, **kwargs)

        v_head_state_dict = self.v_head.state_dict(*args, **kwargs)
        for k, v in v_head_state_dict.items():
            pretrained_model_state_dict[f"v_head.{k}"] = v
        return pretrained_model_state_dict

    def push_to_hub(self, *args, **kwargs):
        setattr(self.pretrained_model, "v_head", self.v_head)
        return self.pretrained_model.push_to_hub(*args, **kwargs)

    

    def post_init(self, state_dict):
        for k in list(state_dict.keys()):
            if "v_head." in k:
                state_dict[k.replace("v_head.", "")] = state_dict.pop(k)
        self.v_head.load_state_dict(state_dict, strict=False)
        del state_dict

        if hasattr(self.pretrained_model, "hf_device_map"):
            if (
                "cpu" in self.pretrained_model.hf_device_map.values()
                or "disk" in self.pretrained_model.hf_device_map.values()
            ):
                raise ValueError(
                    "The model is offloaded on CPU or disk - CPU & disk offloading is not supported for ValueHead models."
                )

            first_device = list(set(self.pretrained_model.hf_device_map.values()))[0]

            self.v_head = self.v_head.to(first_device)

            def set_device_hook(module, input, outputs):
                new_output = ()
                for output in outputs:
                    if isinstance(output, torch.Tensor):
                        new_output += (output.to(first_device),)
                    else:
                        new_output += (output,)
                return new_output

            self.register_forward_hook(set_device_hook)

            self.is_sequential_parallel = True
    
    @classmethod
    def register_for_auto_class(cls, auto_class="AutoModel"):
        if not isinstance(auto_class, str):
            auto_class = auto_class.__name__

        import transformers.models.auto as auto_module

        if not hasattr(auto_module, auto_class):
            raise ValueError(f"{auto_class} is not a valid auto class.")

        cls._auto_class = auto_class