metadata
language:
- en
datasets:
- m-newhauser/senator-tweets
Phi-2 Senator Tweets
Phi-2 finetuned on Senator Tweets.
The starting token is [start] and the ending token is [end]
Example:
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("Realluke/phi-2-senator-tweets", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
inputs = tokenizer("[start]", return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
Model Details
Model Description
- Steps: 750
- Finetuning Examples: 1000
- GPU: NVIDIA Tesla T4
- GPU Hours: 2