File size: 1,450 Bytes
d687706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
In [ ]:
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from scipy.special import softmax
Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package.
Run the following command to install 'ipykernel' into the Python environment.
Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall'
In [ ]:
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package.
Run the following command to install 'ipykernel' into the Python environment.
Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall'
In [5]:
def sentiment(tweet):
encoded_text = tokenizer(tweet,return_tensors='pt')
output = model(**encoded_text)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
scores_dict = {
'NEGATIVE' : scores[0],
'NEUTRAL' : scores[1],
'POSITIVE' : scores[2]
}
return scores_dict
In [7]:
tweet = "you're a sweet person😤"
sentiment(tweet)
Out[7]:
{'NEGATIVE': 0.85113734, 'NEUTRAL': 0.13698761, 'POSITIVE': 0.011875027}
In [ ]: |