In [ ]: from transformers import AutoTokenizer from transformers import AutoModelForSequenceClassification from scipy.special import softmax Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package. Run the following command to install 'ipykernel' into the Python environment. Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall' In [ ]: MODEL = f"cardiffnlp/twitter-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForSequenceClassification.from_pretrained(MODEL) Running cells with 'c:\Users\dell\AppData\Local\Microsoft\WindowsApps\python3.10.exe' requires ipykernel package. Run the following command to install 'ipykernel' into the Python environment. Command: 'c:/Users/dell/AppData/Local/Microsoft/WindowsApps/python3.10.exe -m pip install ipykernel -U --user --force-reinstall' In [5]: def sentiment(tweet): encoded_text = tokenizer(tweet,return_tensors='pt') output = model(**encoded_text) scores = output[0][0].detach().numpy() scores = softmax(scores) scores_dict = { 'NEGATIVE' : scores[0], 'NEUTRAL' : scores[1], 'POSITIVE' : scores[2] } return scores_dict In [7]: tweet = "you're a sweet personšŸ˜¤" sentiment(tweet) Out[7]: {'NEGATIVE': 0.85113734, 'NEUTRAL': 0.13698761, 'POSITIVE': 0.011875027} In [ ]: