File size: 4,079 Bytes
56e1a63
 
 
 
 
 
d5f01dd
 
 
 
 
71fbde5
56e1a63
 
 
 
 
e9fa7da
 
56e1a63
 
d5f01dd
 
bc388a5
 
 
 
 
d5f01dd
56e1a63
 
bc388a5
 
 
 
56e1a63
 
bc388a5
 
 
 
 
56e1a63
bc388a5
e1dda0d
56e1a63
bc388a5
 
56e1a63
 
 
bc388a5
 
56e1a63
 
 
947a6ec
 
 
 
bc388a5
56e1a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f01dd
56e1a63
10768d8
56e1a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc388a5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
base_model:
- Laxhar/sdxl_noob
language:
- en
tags:
- stable-diffusion
- sdxl
new_version: RedRayz/hikari_noob_v-pred_0.5
---
# Illumina-NoobVpd

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/630e2d981ef92d4e37a1694e/wBjJ21LUPoQ_OsqCCtG0m.jpeg)

Civitai model page: https://civitai.com/models/916947

Fine-tuned NoobAI-XL(v-prediction) and merged SPO

NoobAI-XL(v-prediction)をファインチューンし、SPOをマージしました。

日本語での導入手順はページ下部にあります。

## Requirements / 動作要件
- AUTOMATIC1111 WebUI on `dev` branch / devブランチ上のAUTOMATIC1111 WebUI
- Latest version of ComfyUI / 最新版のComfyUI
- ReForge on `dev_upstream_experimental` branch / `dev_upstream_experimental`ブランチ上のreForge

### Instruction for AUTOMATIC1111
1. Download the model
2. Switch branch to `dev`
3. Copy `configs/sd_xl_v.yaml` to `models/Stable-Diffusion/`
4. Rename it to the same as the model name

### Instruction for ReForge
1. Download the model
2. Switch branch to `dev_upstream_experimental`
3. Find “Advanced Model Sampling for Forge” at the bottom of the page
4. Enable “Enable Advanced Model Sampling”
5. Select `v_prediction` in Discrete Sampling Type

### Example Workflow for ComfyUI / ComfyUIサンプルワークフロー
Download it from [here](https://files.catbox.moe/fqj2wp.json)

## Prompt Guidelines / プロンプト記法
Almost same as the base model/ベースモデルとおおむね同じ

To improve the quality of background, add `simple background, transparent background` to Negative Prompt.

## Recommended Prompt / 推奨プロンプト
Positive: None/無し(Works good without `masterpiece, best quality` / `masterpiece, best quality`無しでおk)

Negative: `worst quality, low quality, bad quality, lowres, jpeg artifacts, unfinished, oldest, old, photoshop \(medium\), abstract`

Tips: Leaving Negative Prompt empty will increase the diversity of styles(less 'masterpiece').

ヒント: ネガティブプロンプトを空にしておくと画風の多様性が高くなります(マスピ感を軽減)

## Recommended Settings / 推奨設定
Steps: 14-28

Sampler: DPM++ 2M(dpmpp_2m)

Scheduler: Simple

Guidance Scale: 4-9

### Hires.fix

Hires upscaler: 4x-UltraSharp or Latent(nearest-exact)

Denoising strength: 0.4-0.5(0.6 for latent)


## Merge recipe(Weighted sum)
I made 6 Illustrious-based models and merged them.

- Stage 0: finetunes v-pred test model with AI-generated images
- Stage 1: finetunes stage 0 model with 300 scenery images from Gelbooru

- Stage 2: Finetune and merge(see below)

*A-F,sd15: finetuned stage1(ReLoRA)

- A * 0.6 + B * 0.4 = tmp1
- tmp1 * 0.6 + C * 0.4 = tmp2
- tmp2 * 0.7 + F * 0.3 = tmp3
- tmp3 * 0.7 + E * 0.3 = tmp4
- tmp4 * 0.5 + D * 0.5 = tmp5
- tmp5 * 0.65 + sd15 * 0.35 = tmp6
- tmp6 + SPO LoRA = Result

## Training scripts:
[sd-scripts](https://github.com/kohya-ss/sd-scripts)

## Notice
This model is licensed under [Fair AI Public License 1.0-SD](https://freedevproject.org/faipl-1.0-sd/)

If you make modify this model, you must share both your changes and the original license.

You are prohibited from monetizing any close-sourced fine-tuned / merged model, which disallows the public from accessing the model's source code / weights and its usages.

### AUTOMATIC1111の導入手順
1. devブランチに切り替える(ブランチの切り替えかたは各自調べてください)。
2. モデルをダウンロードする。
3. `configs/sd_xl_v.yaml`を`models/Stable-Diffusion/`にコピーする
4. コピペしたファイルをモデル名と同名にする

### ReForgeの導入手順
1. `dev_upstream_experimental`ブランチに切り替える
2. モデルをダウンロードする。
3. WebUIのページ下部から“Advanced Model Sampling for Forge”を見つける
4. “Enable Advanced Model Sampling”を有効にする
5. Discrete Sampling Typeを`v_prediction`にする