File size: 10,303 Bytes
a6aea4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
"""
Do zero-shot image classification.
Writes the output to a plaintext and JSON format in the logs directory.
"""
import argparse
import ast
import contextlib
import json
import logging
import os
import random
import sys
import numpy as np
import open_clip
import torch
import torch.nn.functional as F
from torchvision import datasets
from tqdm import tqdm
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger("main")
openai_templates = [
lambda c: f"a bad photo of a {c}.",
lambda c: f"a photo of many {c}.",
lambda c: f"a sculpture of a {c}.",
lambda c: f"a photo of the hard to see {c}.",
lambda c: f"a low resolution photo of the {c}.",
lambda c: f"a rendering of a {c}.",
lambda c: f"graffiti of a {c}.",
lambda c: f"a bad photo of the {c}.",
lambda c: f"a cropped photo of the {c}.",
lambda c: f"a tattoo of a {c}.",
lambda c: f"the embroidered {c}.",
lambda c: f"a photo of a hard to see {c}.",
lambda c: f"a bright photo of a {c}.",
lambda c: f"a photo of a clean {c}.",
lambda c: f"a photo of a dirty {c}.",
lambda c: f"a dark photo of the {c}.",
lambda c: f"a drawing of a {c}.",
lambda c: f"a photo of my {c}.",
lambda c: f"the plastic {c}.",
lambda c: f"a photo of the cool {c}.",
lambda c: f"a close-up photo of a {c}.",
lambda c: f"a black and white photo of the {c}.",
lambda c: f"a painting of the {c}.",
lambda c: f"a painting of a {c}.",
lambda c: f"a pixelated photo of the {c}.",
lambda c: f"a sculpture of the {c}.",
lambda c: f"a bright photo of the {c}.",
lambda c: f"a cropped photo of a {c}.",
lambda c: f"a plastic {c}.",
lambda c: f"a photo of the dirty {c}.",
lambda c: f"a jpeg corrupted photo of a {c}.",
lambda c: f"a blurry photo of the {c}.",
lambda c: f"a photo of the {c}.",
lambda c: f"a good photo of the {c}.",
lambda c: f"a rendering of the {c}.",
lambda c: f"a {c} in a video game.",
lambda c: f"a photo of one {c}.",
lambda c: f"a doodle of a {c}.",
lambda c: f"a close-up photo of the {c}.",
lambda c: f"a photo of a {c}.",
lambda c: f"the origami {c}.",
lambda c: f"the {c} in a video game.",
lambda c: f"a sketch of a {c}.",
lambda c: f"a doodle of the {c}.",
lambda c: f"a origami {c}.",
lambda c: f"a low resolution photo of a {c}.",
lambda c: f"the toy {c}.",
lambda c: f"a rendition of the {c}.",
lambda c: f"a photo of the clean {c}.",
lambda c: f"a photo of a large {c}.",
lambda c: f"a rendition of a {c}.",
lambda c: f"a photo of a nice {c}.",
lambda c: f"a photo of a weird {c}.",
lambda c: f"a blurry photo of a {c}.",
lambda c: f"a cartoon {c}.",
lambda c: f"art of a {c}.",
lambda c: f"a sketch of the {c}.",
lambda c: f"a embroidered {c}.",
lambda c: f"a pixelated photo of a {c}.",
lambda c: f"itap of the {c}.",
lambda c: f"a jpeg corrupted photo of the {c}.",
lambda c: f"a good photo of a {c}.",
lambda c: f"a plushie {c}.",
lambda c: f"a photo of the nice {c}.",
lambda c: f"a photo of the small {c}.",
lambda c: f"a photo of the weird {c}.",
lambda c: f"the cartoon {c}.",
lambda c: f"art of the {c}.",
lambda c: f"a drawing of the {c}.",
lambda c: f"a photo of the large {c}.",
lambda c: f"a black and white photo of a {c}.",
lambda c: f"the plushie {c}.",
lambda c: f"a dark photo of a {c}.",
lambda c: f"itap of a {c}.",
lambda c: f"graffiti of the {c}.",
lambda c: f"a toy {c}.",
lambda c: f"itap of my {c}.",
lambda c: f"a photo of a cool {c}.",
lambda c: f"a photo of a small {c}.",
lambda c: f"a tattoo of the {c}.",
]
def parse_args(args):
class ParseKwargs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
kw = {}
for value in values:
key, value = value.split("=")
try:
kw[key] = ast.literal_eval(value)
except (ValueError, SyntaxError):
# fallback to string (avoid need to escape on command line)
kw[key] = str(value)
setattr(namespace, self.dest, kw)
parser = argparse.ArgumentParser()
parser.add_argument(
"--datasets",
type=str,
default=None,
nargs="+",
help="Path to dirs(s) with validation data. In the format NAME=PATH.",
action=ParseKwargs,
)
parser.add_argument(
"--logs", type=str, default="./logs", help="Where to write logs"
)
parser.add_argument(
"--exp", type=str, default="bioclip-zero-shot", help="Experiment name."
)
parser.add_argument(
"--workers", type=int, default=8, help="Number of dataloader workers per GPU."
)
parser.add_argument(
"--batch-size", type=int, default=64, help="Batch size per GPU."
)
parser.add_argument(
"--precision",
choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp32"],
default="amp",
help="Floating point precision.",
)
parser.add_argument("--seed", type=int, default=0, help="Default random seed.")
args = parser.parse_args(args)
os.makedirs(os.path.join(args.logs, args.exp), exist_ok=True)
return args
def make_txt_features(model, classnames, templates, args):
tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip")
with torch.no_grad():
txt_features = []
for classname in tqdm(classnames):
classname = " ".join(word for word in classname.split("_") if word)
texts = [template(classname) for template in templates] # format with class
texts = tokenizer(texts).to(args.device) # tokenize
class_embeddings = model.encode_text(texts)
class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
class_embedding /= class_embedding.norm()
txt_features.append(class_embedding)
txt_features = torch.stack(txt_features, dim=1).to(args.device)
return txt_features
def accuracy(output, target, topk=(1,)):
pred = output.topk(max(topk), 1, True, True)[1].t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
return [correct[:k].reshape(-1).float().sum(0, keepdim=True).item() for k in topk]
def get_autocast(precision):
if precision == "amp":
return torch.cuda.amp.autocast
elif precision == "amp_bfloat16" or precision == "amp_bf16":
# amp_bfloat16 is more stable than amp float16 for clip training
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16)
else:
return contextlib.suppress
def run(model, txt_features, dataloader, args):
autocast = get_autocast(args.precision)
cast_dtype = open_clip.get_cast_dtype(args.precision)
top1, top5, n = 0.0, 0.0, 0.0
with torch.no_grad():
for images, targets in tqdm(dataloader, unit_scale=args.batch_size):
images = images.to(args.device)
if cast_dtype is not None:
images = images.to(dtype=cast_dtype)
targets = targets.to(args.device)
with autocast():
image_features = model.encode_image(images)
image_features = F.normalize(image_features, dim=-1)
logits = model.logit_scale.exp() * image_features @ txt_features
# Measure accuracy
acc1, acc5 = accuracy(logits, targets, topk=(1, 5))
top1 += acc1
top5 += acc5
n += images.size(0)
top1 = top1 / n
top5 = top5 / n
return top1, top5
def evaluate(model, data, args):
results = {}
logger.info("Starting zero-shot classification.")
for split in data:
logger.info("Building zero-shot %s classifier.", split)
classnames = data[split].dataset.classes
classnames = [name.replace("_", " ") for name in classnames]
txt_features = make_txt_features(model, classnames, openai_templates, args)
logger.info("Got text features.")
top1, top5 = run(model, txt_features, data[split], args)
logger.info("%s-top1: %.3f", split, top1 * 100)
logger.info("%s-top5: %.3f", split, top5 * 100)
results[f"{split}-top1"] = top1 * 100
results[f"{split}-top5"] = top5 * 100
logger.info("Finished zero-shot %s.", split)
logger.info("Finished zero-shot classification.")
return results
if __name__ == "__main__":
args = parse_args(sys.argv[1:])
if torch.cuda.is_available():
# This enables tf32 on Ampere GPUs which is only 8% slower than
# float16 and almost as accurate as float32
# This was a default in pytorch until 1.12
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# Init torch device
if torch.cuda.is_available():
device = "cuda:0"
torch.cuda.set_device(device)
else:
device = "cpu"
args.device = device
# Random seeding
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# Load model.
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(
"hf-hub:imageomics/bioclip"
)
# Write datasets
params_file = os.path.join(args.logs, args.exp, "params.json")
with open(params_file, "w") as fd:
params = {name: getattr(args, name) for name in vars(args)}
json.dump(params, fd, sort_keys=True, indent=4)
# Initialize datasets.
data = {}
for split, path in args.datasets.items():
data[split] = torch.utils.data.DataLoader(
datasets.ImageFolder(path, transform=preprocess_val),
batch_size=args.batch_size,
num_workers=args.workers,
sampler=None,
shuffle=False,
)
model.eval()
results = evaluate(model, data, args)
results_file = os.path.join(args.logs, args.exp, "results.json")
with open(results_file, "w") as fd:
json.dump(results, fd, indent=4, sort_keys=True)
|