L3.1-Pneuma-8B / README.md
Kquant03's picture
Update README.md
843163c verified
|
raw
history blame
3.49 kB
metadata
library_name: transformers
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: L3.1-Pneuma-8B
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.5.0

base_model: meta-llama/Llama-3.1-8B-Instruct

load_in_8bit: false
load_in_4bit: false
strict: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Sandevistan_cleaned.jsonl
    type: customllama3_stan
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out

fix_untrained_tokens: true

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true

wandb_project: Pneuma
wandb_entity: 
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 8
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0000078
max_grad_norm: 1

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
eval_sample_packing: false

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

hub_model_id: Replete-AI/L3.1-Pneuma-8B
hub_strategy: every_save

warmup_steps: 0
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|begin_of_text|>"
  eos_token: "<|end_of_text|>"
  pad_token: "<|end_of_text|>"
tokens:

L3.1-Pneuma-8B

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the Sandevistan dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.8e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
1.0731 0.0023 1 2.7679
0.6458 0.3338 143 2.4576
0.6504 0.6675 286 2.4407
1.112 1.0019 429 2.4358
0.6014 1.3357 572 2.4358
0.6194 1.6694 715 2.4357

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3