File size: 4,596 Bytes
e7e26f0
 
 
 
 
 
 
 
40d29f9
e7e26f0
40d29f9
 
e7e26f0
 
c97ac02
e7e26f0
fc99b83
40d29f9
85de02e
 
 
8578457
85de02e
 
4600b63
 
5e89112
40d29f9
 
e7e26f0
 
 
 
b1b483d
85de02e
 
 
 
 
12900ce
 
 
 
85de02e
 
12900ce
 
 
 
85de02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12900ce
85de02e
 
 
 
 
 
 
 
 
 
 
 
12900ce
 
85de02e
 
 
12900ce
85de02e
 
 
 
12900ce
 
 
 
 
85de02e
12900ce
 
85de02e
12900ce
85de02e
 
e7e26f0
12900ce
 
e7e26f0
 
1b34c7f
e7e26f0
 
 
40d29f9
 
 
e7e26f0
 
 
 
 
40d29f9
e7e26f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb659e1
 
 
 
 
 
e7e26f0
 
 
 
 
 
40d29f9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Hibiki_ASR_Phonemizer
  results: []
language:
- ja
---

# Hibiki ASR Phonemizer

This model is a Phoneme Level Speech Recognition network, originally a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on a
mixture of Different Japanese datasets.

it can detect, transcribe and do the following:

- non-speech sounds such as gasp, erotic moans, laughter, etc.
- adding punctuations more faithfully.

a Grapheme decoder head (i.e outputting normal Japanese) will probably be trained as well. Though going directly from audio to Phonemes will result in a
more accurate representation for Japanese.


 evaluation set:
- Loss: 0.2186
- Wer: 21.6707


## Inference and Post-proc (Highly recommended to check the notebook below!)

```python

# this function was borrowed and modified from Aaron Yinghao Li, the Author of StyleTTS paper.

from datasets import Dataset, Audio
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import jaconv

kana_mapper = dict([
    ("ゔぁ","ba"),
          .
          .
          .
          etc. # Take a look at the Notebook for the whole code
    ("ぉ"," o"),
    ("ゎ"," ɯa"),
    ("ぉ"," o"),

    ("を","o")
])


def post_fix(text):
    orig = text

    for k, v in kana_mapper.items():
        text = text.replace(k, v)

    return text


processor = WhisperProcessor.from_pretrained("openai/whisper-large-v3")
model = WhisperForConditionalGeneration.from_pretrained("Respair/Hibiki_ASR_Phonemizer").to("cuda:0")

forced_decoder_ids = processor.get_decoder_prompt_ids(task="transcribe", language='japanese')


import re

sample = Dataset.from_dict({"audio": ["/content/kl_chunk1987.wav"]}).cast_column("audio", Audio(16000))
sample = sample[0]['audio']

# Ensure the input features are on the same device as the model
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features.to("cuda:0")

# generate token ids
predicted_ids = model.generate(input_features,forced_decoder_ids=forced_decoder_ids, repetition_penalty=1.2)
# decode token ids to text
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)


# You can add your final adjustments here, it's better to write a dict though, but I'm just giving you a quick demonstration here.

if ' neɽitai ' in transcription[0]:
    transcription[0] = transcription[0].replace(' neɽitai ', "naɽitai")

if 'harɯdʑisama' in transcription[0]:
    transcription[0] = transcription[0].replace('harɯdʑisama', "arɯdʑisama")


if "ki ni ɕinai" in transcription[0]:
    transcription[0] = re.sub(r'(?<!\s)ki ni ɕinai', r' ki ni ɕinai', transcription[0])

if 'ʔt' in transcription[0]:
    transcription[0] = re.sub(r'(?<!\s)ʔt', r'ʔt', transcription[0])

if 'de aɽoɯ' in transcription[0]:
    transcription[0] = re.sub(r'(?<!\s)de aɽoɯ', r' de aɽoɯ', transcription[0])

post_fix(jaconv.kata2hira(transcription[0].lstrip())) # Ensuring the model won't hallucinate and return kana

```

the Full code -> [Notebook](https://colab.research.google.com/drive/13tx8WKzkvePFdtKU4WUE_iYyYCqTY8dZ#scrollTo=5XqUs-sPdT79)

## Intended uses & limitations

No restrictions is imposed by me, but proceed at your own risk, The User (You) are entirely responisble for their actions.

## Training and evaluation data

- Japanese Common Voice 17
- ehehe Corpus
- Custom Game and Anime dataset (around 8 hours)

## Training procedure

### Training hyperparameters


The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.2101        | 0.8058 | 1000 | 0.2090          | 30.1840 |
| 0.1369        | 1.6116 | 2000 | 0.1837          | 27.6756 |
| 0.0838        | 2.4174 | 3000 | 0.1829          | 26.4036 |
| 0.0454        | 3.2232 | 4000 | 0.1922          | 20.9549 |
| 0.0434        | 4.0290 | 5000 | 0.2072          | 20.8898 |
| 0.021         | 4.8348 | 6000 | 0.2186          | 21.6707 |

### Compute and Duration

- 1x A100(40G)
- 64gb RAM
- BF16
- 14hrs

### Framework versions

- Transformers 4.41.1
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1