--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper_JP results: [] --- # Whisper_JP This model is a a Phoneme Level Speech Recognition network, originally a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on a mixture of Different datasets. It achieves the following results on the evaluation set: - Loss: 0.2186 - Wer: 21.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2101 | 0.8058 | 1000 | 0.2090 | 30.1840 | | 0.1369 | 1.6116 | 2000 | 0.1837 | 27.6756 | | 0.0838 | 2.4174 | 3000 | 0.1829 | 26.4036 | | 0.0454 | 3.2232 | 4000 | 0.1922 | 20.9549 | | 0.0434 | 4.0290 | 5000 | 0.2072 | 20.8898 | | 0.021 | 4.8348 | 6000 | 0.2186 | 21.6707 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.4.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1