uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
zephyr-7b-gemma-sft-v0.1 - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/HuggingFaceH4/
|
12 |
+
- Original model: https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-sft-v0.1/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: other
|
20 |
+
license_name: gemma-terms-of-use
|
21 |
+
license_link: https://ai.google.dev/gemma/terms
|
22 |
+
base_model: google/gemma-7b
|
23 |
+
tags:
|
24 |
+
- alignment-handbook
|
25 |
+
- trl
|
26 |
+
- sft
|
27 |
+
- generated_from_trainer
|
28 |
+
- trl
|
29 |
+
- sft
|
30 |
+
- generated_from_trainer
|
31 |
+
datasets:
|
32 |
+
- HuggingFaceH4/deita-10k-v0-sft
|
33 |
+
model-index:
|
34 |
+
- name: zephyr-7b-gemma-sft
|
35 |
+
results: []
|
36 |
+
language:
|
37 |
+
- en
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# zephyr-7b-gemma-sft
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.9732
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 2e-05
|
67 |
+
- train_batch_size: 4
|
68 |
+
- eval_batch_size: 4
|
69 |
+
- seed: 42
|
70 |
+
- distributed_type: multi-GPU
|
71 |
+
- num_devices: 16
|
72 |
+
- gradient_accumulation_steps: 2
|
73 |
+
- total_train_batch_size: 128
|
74 |
+
- total_eval_batch_size: 64
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: cosine
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 3
|
79 |
+
|
80 |
+
### Training results
|
81 |
+
|
82 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
83 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
84 |
+
| 0.9482 | 1.0 | 299 | 0.9848 |
|
85 |
+
| 0.8139 | 2.0 | 599 | 0.9610 |
|
86 |
+
| 0.722 | 2.99 | 897 | 0.9732 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.39.0.dev0
|
92 |
+
- Pytorch 2.1.2+cu121
|
93 |
+
- Datasets 2.14.6
|
94 |
+
- Tokenizers 0.15.1
|
95 |
+
|