RichardErkhov
commited on
Commit
•
c81d6ad
1
Parent(s):
5225f42
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
phi-2-4bit-64rank - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/LoftQ/
|
12 |
+
- Original model: https://huggingface.co/LoftQ/phi-2-4bit-64rank/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: mit
|
20 |
+
language:
|
21 |
+
- en
|
22 |
+
pipeline_tag: text-generation
|
23 |
+
tags:
|
24 |
+
- 'quantization '
|
25 |
+
- lora
|
26 |
+
---
|
27 |
+
# LoftQ Initialization
|
28 |
+
|
29 |
+
| [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) |
|
30 |
+
|
31 |
+
LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W.
|
32 |
+
|
33 |
+
This model, `phi-2-4bit-64rank`, is obtained from [phi-2](https://huggingface.co/microsoft/phi-2).
|
34 |
+
The backbone is under `LoftQ/phi-2-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`.
|
35 |
+
|
36 |
+
## Model Info
|
37 |
+
### Backbone
|
38 |
+
- Stored format: `torch.float16`
|
39 |
+
- Size: ~ 5.5 GiB
|
40 |
+
- Loaded format: bitsandbytes nf4
|
41 |
+
- Size loaded on GPU: ~1.4 GiB
|
42 |
+
|
43 |
+
### LoRA adapters
|
44 |
+
- rank: 64
|
45 |
+
- lora_alpha: 16
|
46 |
+
- target_modules: ["q_proj", "k_proj", "v_proj", "dense", "fc1", "fc2"]
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
|
50 |
+
**Training** Here's an example of loading this model and preparing for the LoRA fine-tuning.
|
51 |
+
|
52 |
+
```python
|
53 |
+
import torch
|
54 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
55 |
+
from peft import PeftModel
|
56 |
+
|
57 |
+
MODEL_ID = "LoftQ/phi-2-4bit-64rank"
|
58 |
+
|
59 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
MODEL_ID,
|
61 |
+
torch_dtype=torch.float32, # you may change it with different models
|
62 |
+
quantization_config=BitsAndBytesConfig(
|
63 |
+
load_in_4bit=True,
|
64 |
+
bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied
|
65 |
+
bnb_4bit_use_double_quant=False,
|
66 |
+
bnb_4bit_quant_type='nf4',
|
67 |
+
),
|
68 |
+
)
|
69 |
+
peft_model = PeftModel.from_pretrained(
|
70 |
+
base_model,
|
71 |
+
MODEL_ID,
|
72 |
+
subfolder="loftq_init",
|
73 |
+
is_trainable=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
# Do training with peft_model ...
|
77 |
+
```
|
78 |
+
|
79 |
+
## Experiment Results
|
80 |
+
We have conducted experiments on supervised fine-tuning of [GSM8K](https://huggingface.co/datasets/gsm8k).
|
81 |
+
|
82 |
+
| Model | Bits | Rank | LoRA Initial | GSM8K |
|
83 |
+
| --------| ---- | ---- | ---------------------- | --------- |
|
84 |
+
| Phi-2 | 16 | - | Full model fine-tuning | 66.8±1.2 |
|
85 |
+
| Phi-2 | 16 | 64 | Gaussian + 0 (LoRA) | 64.8±0.5 |
|
86 |
+
| Phi-2 | 4 | 64 | Gaussian + 0 (QLoRA) | 60.2±0.6 |
|
87 |
+
| Phi-2 | 4 | 64 | LoftQ | 64.1±0.7 |
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
**Inference** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k).
|
92 |
+
|
93 |
+
```python
|
94 |
+
import torch
|
95 |
+
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
96 |
+
from peft import PeftModel
|
97 |
+
|
98 |
+
MODEL_ID = "LoftQ/phi-2-4bit-64rank"
|
99 |
+
|
100 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
101 |
+
MODEL_ID,
|
102 |
+
torch_dtype=torch.float32, # you may change it with different models
|
103 |
+
quantization_config=BitsAndBytesConfig(
|
104 |
+
load_in_4bit=True,
|
105 |
+
bnb_4bit_compute_dtype=torch.float32, # float32 is tested and veryfied
|
106 |
+
bnb_4bit_use_double_quant=False,
|
107 |
+
bnb_4bit_quant_type='nf4',
|
108 |
+
),
|
109 |
+
)
|
110 |
+
peft_model = PeftModel.from_pretrained(
|
111 |
+
base_model,
|
112 |
+
MODEL_ID,
|
113 |
+
subfolder="gsm8k",
|
114 |
+
is_trainable=True,
|
115 |
+
)
|
116 |
+
|
117 |
+
# Do inference with peft_model ...
|
118 |
+
```
|
119 |
+
See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ))
|
120 |
+
|
121 |
+
|
122 |
+
## Citation
|
123 |
+
|
124 |
+
```bibtex
|
125 |
+
@article{li2023loftq,
|
126 |
+
title={Loftq: Lora-fine-tuning-aware quantization for large language models},
|
127 |
+
author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo},
|
128 |
+
journal={arXiv preprint arXiv:2310.08659},
|
129 |
+
year={2023}
|
130 |
+
}
|
131 |
+
```
|
132 |
+
|
133 |
+
|