RichardErkhov commited on
Commit
947580e
1 Parent(s): aeec0a0

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Qwen1.5-MoE-A2.7B-Chat - GGUF
11
+ - Model creator: https://huggingface.co/Qwen/
12
+ - Original model: https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Qwen1.5-MoE-A2.7B-Chat.Q2_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q2_K.gguf) | Q2_K | 5.49GB |
18
+ | [Qwen1.5-MoE-A2.7B-Chat.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.IQ3_XS.gguf) | IQ3_XS | 6.07GB |
19
+ | [Qwen1.5-MoE-A2.7B-Chat.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.IQ3_S.gguf) | IQ3_S | 6.37GB |
20
+ | [Qwen1.5-MoE-A2.7B-Chat.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q3_K_S.gguf) | Q3_K_S | 6.37GB |
21
+ | [Qwen1.5-MoE-A2.7B-Chat.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.IQ3_M.gguf) | IQ3_M | 6.46GB |
22
+ | [Qwen1.5-MoE-A2.7B-Chat.Q3_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q3_K.gguf) | Q3_K | 6.93GB |
23
+ | [Qwen1.5-MoE-A2.7B-Chat.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q3_K_M.gguf) | Q3_K_M | 6.93GB |
24
+ | [Qwen1.5-MoE-A2.7B-Chat.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q3_K_L.gguf) | Q3_K_L | 7.21GB |
25
+ | [Qwen1.5-MoE-A2.7B-Chat.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.IQ4_XS.gguf) | IQ4_XS | 7.4GB |
26
+ | [Qwen1.5-MoE-A2.7B-Chat.Q4_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q4_0.gguf) | Q4_0 | 7.59GB |
27
+ | [Qwen1.5-MoE-A2.7B-Chat.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.IQ4_NL.gguf) | IQ4_NL | 7.68GB |
28
+ | [Qwen1.5-MoE-A2.7B-Chat.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q4_K_S.gguf) | Q4_K_S | 8.11GB |
29
+ | [Qwen1.5-MoE-A2.7B-Chat.Q4_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q4_K.gguf) | Q4_K | 8.84GB |
30
+ | [Qwen1.5-MoE-A2.7B-Chat.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q4_K_M.gguf) | Q4_K_M | 8.84GB |
31
+ | [Qwen1.5-MoE-A2.7B-Chat.Q4_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q4_1.gguf) | Q4_1 | 8.41GB |
32
+ | [Qwen1.5-MoE-A2.7B-Chat.Q5_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q5_0.gguf) | Q5_0 | 9.22GB |
33
+ | [Qwen1.5-MoE-A2.7B-Chat.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q5_K_S.gguf) | Q5_K_S | 9.46GB |
34
+ | [Qwen1.5-MoE-A2.7B-Chat.Q5_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q5_K.gguf) | Q5_K | 10.09GB |
35
+ | [Qwen1.5-MoE-A2.7B-Chat.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q5_K_M.gguf) | Q5_K_M | 10.09GB |
36
+ | [Qwen1.5-MoE-A2.7B-Chat.Q5_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q5_1.gguf) | Q5_1 | 10.04GB |
37
+ | [Qwen1.5-MoE-A2.7B-Chat.Q6_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q6_K.gguf) | Q6_K | 11.89GB |
38
+ | [Qwen1.5-MoE-A2.7B-Chat.Q8_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen1.5-MoE-A2.7B-Chat-gguf/blob/main/Qwen1.5-MoE-A2.7B-Chat.Q8_0.gguf) | Q8_0 | 14.18GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: other
46
+ license_name: tongyi-qianwen
47
+ license_link: >-
48
+ https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B-Chat/blob/main/LICENSE
49
+ language:
50
+ - en
51
+ pipeline_tag: text-generation
52
+ tags:
53
+ - chat
54
+ ---
55
+
56
+ # Qwen1.5-MoE-A2.7B-Chat
57
+
58
+
59
+ ## Introduction
60
+
61
+ Qwen1.5-MoE is a transformer-based MoE decoder-only language model pretrained on a large amount of data.
62
+
63
+ For more details, please refer to our [blog post](https://qwenlm.github.io/blog/qwen-moe/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5).
64
+
65
+ ## Model Details
66
+ Qwen1.5-MoE employs Mixture of Experts (MoE) architecture, where the models are upcycled from dense language models. For instance, `Qwen1.5-MoE-A2.7B` is upcycled from `Qwen-1.8B`. It has 14.3B parameters in total and 2.7B activated parameters during runtime, while achieching comparable performance to `Qwen1.5-7B`, it only requires 25% of the training resources. We also observed that the inference speed is 1.74 times that of `Qwen1.5-7B`.
67
+
68
+ ## Training details
69
+ We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
70
+
71
+ ## Requirements
72
+ The code of Qwen1.5-MoE has been in the latest Hugging face transformers and we advise you to build from source with command `pip install git+https://github.com/huggingface/transformers`, or you might encounter the following error:
73
+ ```
74
+ KeyError: 'qwen2_moe'.
75
+ ```
76
+
77
+ ## Quickstart
78
+
79
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
80
+
81
+ ```python
82
+ from transformers import AutoModelForCausalLM, AutoTokenizer
83
+ device = "cuda" # the device to load the model onto
84
+
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ "Qwen/Qwen1.5-MoE-A2.7B-Chat",
87
+ torch_dtype="auto",
88
+ device_map="auto"
89
+ )
90
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-MoE-A2.7B-Chat")
91
+
92
+ prompt = "Give me a short introduction to large language model."
93
+ messages = [
94
+ {"role": "system", "content": "You are a helpful assistant."},
95
+ {"role": "user", "content": prompt}
96
+ ]
97
+ text = tokenizer.apply_chat_template(
98
+ messages,
99
+ tokenize=False,
100
+ add_generation_prompt=True
101
+ )
102
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
103
+
104
+ generated_ids = model.generate(
105
+ model_inputs.input_ids,
106
+ max_new_tokens=512
107
+ )
108
+ generated_ids = [
109
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
110
+ ]
111
+
112
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
113
+ ```
114
+
115
+ For quantized models, we advise you to use the GPTQ correspondents, namely `Qwen1.5-MoE-A2.7B-Chat-GPTQ-Int4`.
116
+
117
+
118
+ ## Tips
119
+
120
+ * If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in `generation_config.json`.
121
+ *
122
+