RichardErkhov commited on
Commit
7ff0c3e
1 Parent(s): 162c548

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +207 -0
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Qwen2-57B-A14B-Instruct - GGUF
11
+ - Model creator: https://huggingface.co/Qwen/
12
+ - Original model: https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Qwen2-57B-A14B-Instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q2_K.gguf) | Q2_K | 19.62GB |
18
+ | [Qwen2-57B-A14B-Instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.IQ3_XS.gguf) | IQ3_XS | 21.98GB |
19
+ | [Qwen2-57B-A14B-Instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.IQ3_S.gguf) | IQ3_S | 23.21GB |
20
+ | [Qwen2-57B-A14B-Instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q3_K_S.gguf) | Q3_K_S | 23.2GB |
21
+ | [Qwen2-57B-A14B-Instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.IQ3_M.gguf) | IQ3_M | 23.5GB |
22
+ | [Qwen2-57B-A14B-Instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q3_K.gguf) | Q3_K | 25.62GB |
23
+ | [Qwen2-57B-A14B-Instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q3_K_M.gguf) | Q3_K_M | 25.62GB |
24
+ | [Qwen2-57B-A14B-Instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q3_K_L.gguf) | Q3_K_L | 27.74GB |
25
+ | [Qwen2-57B-A14B-Instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.IQ4_XS.gguf) | IQ4_XS | 28.87GB |
26
+ | [Qwen2-57B-A14B-Instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q4_0.gguf) | Q4_0 | 30.23GB |
27
+ | [Qwen2-57B-A14B-Instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.IQ4_NL.gguf) | IQ4_NL | 30.47GB |
28
+ | [Qwen2-57B-A14B-Instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q4_K_S.gguf) | Q4_K_S | 30.46GB |
29
+ | [Qwen2-57B-A14B-Instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q4_K.gguf) | Q4_K | 32.46GB |
30
+ | [Qwen2-57B-A14B-Instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q4_K_M.gguf) | Q4_K_M | 32.46GB |
31
+ | [Qwen2-57B-A14B-Instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q4_1.gguf) | Q4_1 | 33.54GB |
32
+ | [Qwen2-57B-A14B-Instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q5_0.gguf) | Q5_0 | 36.85GB |
33
+ | [Qwen2-57B-A14B-Instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/blob/main/Qwen2-57B-A14B-Instruct.Q5_K_S.gguf) | Q5_K_S | 36.85GB |
34
+ | [Qwen2-57B-A14B-Instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/tree/main/) | Q5_K | 38.0GB |
35
+ | [Qwen2-57B-A14B-Instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/tree/main/) | Q5_K_M | 38.0GB |
36
+ | [Qwen2-57B-A14B-Instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/tree/main/) | Q5_1 | 40.16GB |
37
+ | [Qwen2-57B-A14B-Instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/tree/main/) | Q6_K | 43.88GB |
38
+ | [Qwen2-57B-A14B-Instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/Qwen_-_Qwen2-57B-A14B-Instruct-gguf/tree/main/) | Q8_0 | 56.83GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: apache-2.0
46
+ language:
47
+ - en
48
+ pipeline_tag: text-generation
49
+ tags:
50
+ - chat
51
+ base_model: Qwen/Qwen2-57B-A14B
52
+ ---
53
+
54
+ # Qwen2-57B-A14B-Instruct
55
+
56
+ ## Introduction
57
+
58
+ Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 57B-A14B Mixture-of-Experts Qwen2 model.
59
+
60
+ Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
61
+
62
+ Qwen2-57B-A14B-Instruct supports a context length of up to 65,536 tokens, enabling the processing of extensive inputs. Please refer to [this section](#processing-long-texts) for detailed instructions on how to deploy Qwen2 for handling long texts.
63
+
64
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/) and [GitHub](https://github.com/QwenLM/Qwen2).
65
+ <br>
66
+
67
+ ## Model Details
68
+ Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
69
+
70
+ ## Training details
71
+ We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.
72
+
73
+
74
+ ## Requirements
75
+ The code of Qwen2MoE has been in the latest Hugging face transformers and we advise you to install `transformers>=4.40.0`, or you might encounter the following error:
76
+ ```
77
+ KeyError: 'qwen2_moe'
78
+ ```
79
+
80
+ ## Quickstart
81
+
82
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
83
+
84
+ ```python
85
+ from transformers import AutoModelForCausalLM, AutoTokenizer
86
+ device = "cuda" # the device to load the model onto
87
+
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ "Qwen/Qwen2-57B-A14B-Instruct",
90
+ torch_dtype="auto",
91
+ device_map="auto"
92
+ )
93
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-57B-A14B-Instruct")
94
+
95
+ prompt = "Give me a short introduction to large language model."
96
+ messages = [
97
+ {"role": "system", "content": "You are a helpful assistant."},
98
+ {"role": "user", "content": prompt}
99
+ ]
100
+ text = tokenizer.apply_chat_template(
101
+ messages,
102
+ tokenize=False,
103
+ add_generation_prompt=True
104
+ )
105
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
106
+
107
+ generated_ids = model.generate(
108
+ model_inputs.input_ids,
109
+ max_new_tokens=512
110
+ )
111
+ generated_ids = [
112
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
113
+ ]
114
+
115
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
116
+ ```
117
+
118
+ ### Processing Long Texts
119
+
120
+ To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
121
+
122
+ For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
123
+
124
+ 1. **Install vLLM**: Ensure you have the latest version from the main branch of [vLLM](https://github.com/vllm-project/vllm).
125
+
126
+ 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
127
+ ```json
128
+ {
129
+ "architectures": [
130
+ "Qwen2MoeForCausalLM"
131
+ ],
132
+ // ...
133
+ "vocab_size": 152064,
134
+
135
+ // adding the following snippets
136
+ "rope_scaling": {
137
+ "factor": 2.0,
138
+ "original_max_position_embeddings": 32768,
139
+ "type": "yarn"
140
+ }
141
+ }
142
+ ```
143
+ This snippet enable YARN to support longer contexts.
144
+
145
+ 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
146
+
147
+ ```bash
148
+ python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-57B-A14B-Instruct --model path/to/weights
149
+ ```
150
+
151
+ Then you can access the Chat API by:
152
+
153
+ ```bash
154
+ curl http://localhost:8000/v1/chat/completions \
155
+ -H "Content-Type: application/json" \
156
+ -d '{
157
+ "model": "Qwen2-57B-A14B-Instruct",
158
+ "messages": [
159
+ {"role": "system", "content": "You are a helpful assistant."},
160
+ {"role": "user", "content": "Your Long Input Here."}
161
+ ]
162
+ }'
163
+ ```
164
+
165
+ For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
166
+
167
+ **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
168
+
169
+ ## Evaluation
170
+
171
+ We briefly compare Qwen2-57B-A14B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-32B-Chat. The results are shown as follows:
172
+
173
+ | Datasets | Mixtral-8x7B-Instruct-v0.1 | Yi-1.5-34B-Chat | Qwen1.5-32B-Chat | **Qwen2-57B-A14B-Instruct** |
174
+ | :--- | :---: | :---: | :---: | :---: |
175
+ |Architecture | MoE | Dense | Dense | MoE |
176
+ |#Activated Params | 12B | 34B | 32B | 14B |
177
+ |#Params | 47B | 34B | 32B | 57B |
178
+ | _**English**_ | | | | |
179
+ | MMLU | 71.4 | **76.8** | 74.8 | 75.4 |
180
+ | MMLU-Pro | 43.3 | 52.3 | 46.4 | **52.8** |
181
+ | GPQA | - | - | 30.8 | **34.3** |
182
+ | TheroemQA | - | - | 30.9 | **33.1** |
183
+ | MT-Bench | 8.30 | 8.50 | 8.30 | **8.55** |
184
+ | _**Coding**_ | | | | |
185
+ | HumanEval | 45.1 | 75.2 | 68.3 | **79.9** |
186
+ | MBPP | 59.5 | **74.6** | 67.9 | 70.9 |
187
+ | MultiPL-E | - | - | 50.7 | **66.4** |
188
+ | EvalPlus | 48.5 | - | 63.6 | **71.6** |
189
+ | LiveCodeBench | 12.3 | - | 15.2 | **25.5** |
190
+ | _**Mathematics**_ | | | | |
191
+ | GSM8K | 65.7 | **90.2** | 83.6 | 79.6 |
192
+ | MATH | 30.7 | **50.1** | 42.4 | 49.1 |
193
+ | _**Chinese**_ | | | | |
194
+ | C-Eval | - | - | 76.7 | 80.5 |
195
+ | AlignBench | 5.70 | 7.20 | 7.19 | **7.36** |
196
+
197
+ ## Citation
198
+
199
+ If you find our work helpful, feel free to give us a cite.
200
+
201
+ ```
202
+ @article{qwen2,
203
+ title={Qwen2 Technical Report},
204
+ year={2024}
205
+ }
206
+ ```
207
+