RichardErkhov commited on
Commit
c932324
1 Parent(s): 5da4dce

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +297 -0
README.md ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ granite-8b-code-instruct - bnb 4bits
11
+ - Model creator: https://huggingface.co/ibm-granite/
12
+ - Original model: https://huggingface.co/ibm-granite/granite-8b-code-instruct/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ pipeline_tag: text-generation
20
+ base_model: ibm-granite/granite-8b-code-base
21
+ inference: false
22
+ license: apache-2.0
23
+ datasets:
24
+ - bigcode/commitpackft
25
+ - TIGER-Lab/MathInstruct
26
+ - meta-math/MetaMathQA
27
+ - glaiveai/glaive-code-assistant-v3
28
+ - glaive-function-calling-v2
29
+ - bugdaryan/sql-create-context-instruction
30
+ - garage-bAInd/Open-Platypus
31
+ - nvidia/HelpSteer
32
+ metrics:
33
+ - code_eval
34
+ library_name: transformers
35
+ tags:
36
+ - code
37
+ - granite
38
+ model-index:
39
+ - name: granite-8b-code-instruct
40
+ results:
41
+ - task:
42
+ type: text-generation
43
+ dataset:
44
+ type: bigcode/humanevalpack
45
+ name: HumanEvalSynthesis(Python)
46
+ metrics:
47
+ - name: pass@1
48
+ type: pass@1
49
+ value: 57.9
50
+ veriefied: false
51
+ - task:
52
+ type: text-generation
53
+ dataset:
54
+ type: bigcode/humanevalpack
55
+ name: HumanEvalSynthesis(JavaScript)
56
+ metrics:
57
+ - name: pass@1
58
+ type: pass@1
59
+ value: 52.4
60
+ veriefied: false
61
+ - task:
62
+ type: text-generation
63
+ dataset:
64
+ type: bigcode/humanevalpack
65
+ name: HumanEvalSynthesis(Java)
66
+ metrics:
67
+ - name: pass@1
68
+ type: pass@1
69
+ value: 58.5
70
+ veriefied: false
71
+ - task:
72
+ type: text-generation
73
+ dataset:
74
+ type: bigcode/humanevalpack
75
+ name: HumanEvalSynthesis(Go)
76
+ metrics:
77
+ - name: pass@1
78
+ type: pass@1
79
+ value: 43.3
80
+ veriefied: false
81
+ - task:
82
+ type: text-generation
83
+ dataset:
84
+ type: bigcode/humanevalpack
85
+ name: HumanEvalSynthesis(C++)
86
+ metrics:
87
+ - name: pass@1
88
+ type: pass@1
89
+ value: 48.2
90
+ veriefied: false
91
+ - task:
92
+ type: text-generation
93
+ dataset:
94
+ type: bigcode/humanevalpack
95
+ name: HumanEvalSynthesis(Rust)
96
+ metrics:
97
+ - name: pass@1
98
+ type: pass@1
99
+ value: 37.2
100
+ veriefied: false
101
+ - task:
102
+ type: text-generation
103
+ dataset:
104
+ type: bigcode/humanevalpack
105
+ name: HumanEvalExplain(Python)
106
+ metrics:
107
+ - name: pass@1
108
+ type: pass@1
109
+ value: 53.0
110
+ veriefied: false
111
+ - task:
112
+ type: text-generation
113
+ dataset:
114
+ type: bigcode/humanevalpack
115
+ name: HumanEvalExplain(JavaScript)
116
+ metrics:
117
+ - name: pass@1
118
+ type: pass@1
119
+ value: 42.7
120
+ veriefied: false
121
+ - task:
122
+ type: text-generation
123
+ dataset:
124
+ type: bigcode/humanevalpack
125
+ name: HumanEvalExplain(Java)
126
+ metrics:
127
+ - name: pass@1
128
+ type: pass@1
129
+ value: 52.4
130
+ veriefied: false
131
+ - task:
132
+ type: text-generation
133
+ dataset:
134
+ type: bigcode/humanevalpack
135
+ name: HumanEvalExplain(Go)
136
+ metrics:
137
+ - name: pass@1
138
+ type: pass@1
139
+ value: 36.6
140
+ veriefied: false
141
+ - task:
142
+ type: text-generation
143
+ dataset:
144
+ type: bigcode/humanevalpack
145
+ name: HumanEvalExplain(C++)
146
+ metrics:
147
+ - name: pass@1
148
+ type: pass@1
149
+ value: 43.9
150
+ veriefied: false
151
+ - task:
152
+ type: text-generation
153
+ dataset:
154
+ type: bigcode/humanevalpack
155
+ name: HumanEvalExplain(Rust)
156
+ metrics:
157
+ - name: pass@1
158
+ type: pass@1
159
+ value: 16.5
160
+ veriefied: false
161
+ - task:
162
+ type: text-generation
163
+ dataset:
164
+ type: bigcode/humanevalpack
165
+ name: HumanEvalFix(Python)
166
+ metrics:
167
+ - name: pass@1
168
+ type: pass@1
169
+ value: 39.6
170
+ veriefied: false
171
+ - task:
172
+ type: text-generation
173
+ dataset:
174
+ type: bigcode/humanevalpack
175
+ name: HumanEvalFix(JavaScript)
176
+ metrics:
177
+ - name: pass@1
178
+ type: pass@1
179
+ value: 40.9
180
+ veriefied: false
181
+ - task:
182
+ type: text-generation
183
+ dataset:
184
+ type: bigcode/humanevalpack
185
+ name: HumanEvalFix(Java)
186
+ metrics:
187
+ - name: pass@1
188
+ type: pass@1
189
+ value: 48.2
190
+ veriefied: false
191
+ - task:
192
+ type: text-generation
193
+ dataset:
194
+ type: bigcode/humanevalpack
195
+ name: HumanEvalFix(Go)
196
+ metrics:
197
+ - name: pass@1
198
+ type: pass@1
199
+ value: 41.5
200
+ veriefied: false
201
+ - task:
202
+ type: text-generation
203
+ dataset:
204
+ type: bigcode/humanevalpack
205
+ name: HumanEvalFix(C++)
206
+ metrics:
207
+ - name: pass@1
208
+ type: pass@1
209
+ value: 39.0
210
+ veriefied: false
211
+ - task:
212
+ type: text-generation
213
+ dataset:
214
+ type: bigcode/humanevalpack
215
+ name: HumanEvalFix(Rust)
216
+ metrics:
217
+ - name: pass@1
218
+ type: pass@1
219
+ value: 32.9
220
+ veriefied: false
221
+ ---
222
+
223
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png)
224
+
225
+ # Granite-8B-Code-Instruct
226
+
227
+ ## Model Summary
228
+ **Granite-8B-Code-Instruct** is a 8B parameter model fine tuned from *Granite-8B-Code-Base* on a combination of **permissively licensed** instruction data to enhance instruction following capabilities including logical reasoning and problem-solving skills.
229
+
230
+ - **Developers:** IBM Research
231
+ - **GitHub Repository:** [ibm-granite/granite-code-models](https://github.com/ibm-granite/granite-code-models)
232
+ - **Paper:** [Granite Code Models: A Family of Open Foundation Models for Code Intelligence](https://arxiv.org/abs/2405.04324)
233
+ - **Release Date**: May 6th, 2024
234
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
235
+
236
+ ## Usage
237
+ > [!WARNING]
238
+ > **You need to build transformers from source to use this model correctly.**
239
+ > Relevant PR: https://github.com/huggingface/transformers/pull/30031
240
+ > ```shell
241
+ > git clone https://github.com/huggingface/transformers
242
+ > cd transformers/
243
+ > pip install ./
244
+ > cd ..
245
+ > ```
246
+
247
+ ### Intended use
248
+ The model is designed to respond to coding related instructions and can be used to build coding assitants.
249
+
250
+ <!-- TO DO: Check starcoder2 instruct code example that includes the template https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1 -->
251
+
252
+ ### Generation
253
+ This is a simple example of how to use **Granite-8B-Code-Instruct** model.
254
+
255
+ ```python
256
+ import torch
257
+ from transformers import AutoModelForCausalLM, AutoTokenizer
258
+ device = "cuda" # or "cpu"
259
+ model_path = "ibm-granite/granite-8b-code-instruct"
260
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
261
+ # drop device_map if running on CPU
262
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
263
+ model.eval()
264
+ # change input text as desired
265
+ chat = [
266
+ { "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
267
+ ]
268
+ chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
269
+ # tokenize the text
270
+ input_tokens = tokenizer(chat, return_tensors="pt")
271
+ # transfer tokenized inputs to the device
272
+ for i in input_tokens:
273
+ input_tokens[i] = input_tokens[i].to(device)
274
+ # generate output tokens
275
+ output = model.generate(**input_tokens, max_new_tokens=100)
276
+ # decode output tokens into text
277
+ output = tokenizer.batch_decode(output)
278
+ # loop over the batch to print, in this example the batch size is 1
279
+ for i in output:
280
+ print(i)
281
+ ```
282
+
283
+ <!-- TO DO: Check this part -->
284
+ ## Training Data
285
+ Granite Code Instruct models are trained on the following types of data.
286
+ * Code Commits Datasets: we sourced code commits data from the [CommitPackFT](https://huggingface.co/datasets/bigcode/commitpackft) dataset, a filtered version of the full CommitPack dataset. From CommitPackFT dataset, we only consider data for 92 programming languages. Our inclusion criteria boils down to selecting programming languages common across CommitPackFT and the 116 languages that we considered to pretrain the code-base model (*Granite-8B-Code-Base*).
287
+ * Math Datasets: We consider two high-quality math datasets, [MathInstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct) and [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA). Due to license issues, we filtered out GSM8K-RFT and Camel-Math from MathInstruct dataset.
288
+ * Code Instruction Datasets: We use [Glaive-Code-Assistant-v3](https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3), [Glaive-Function-Calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2), [NL2SQL11](https://huggingface.co/datasets/bugdaryan/sql-create-context-instruction) and a small collection of synthetic API calling datasets.
289
+ * Language Instruction Datasets: We include high-quality datasets such as [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer) and an open license-filtered version of [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). We also include a collection of hardcoded prompts to ensure our model generates correct outputs given inquiries about its name or developers.
290
+
291
+ ## Infrastructure
292
+ We train the Granite Code models using two of IBM's super computing clusters, namely Vela and Blue Vela, both outfitted with NVIDIA A100 and H100 GPUs respectively. These clusters provide a scalable and efficient infrastructure for training our models over thousands of GPUs.
293
+
294
+ ## Ethical Considerations and Limitations
295
+ Granite code instruct models are primarily finetuned using instruction-response pairs across a specific set of programming languages. Thus, their performance may be limited with out-of-domain programming languages. In this situation, it is beneficial providing few-shot examples to steer the model's output. Moreover, developers should perform safety testing and target-specific tuning before deploying these models on critical applications. The model also inherits ethical considerations and limitations from its base model. For more information, please refer to *[Granite-8B-Code-Base](https://huggingface.co/ibm-granite/granite-8b-code-base)* model card.
296
+
297
+