File size: 11,838 Bytes
92d8c77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
sabia-7b - GGUF
- Model creator: https://huggingface.co/maritaca-ai/
- Original model: https://huggingface.co/maritaca-ai/sabia-7b/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [sabia-7b.Q2_K.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q2_K.gguf) | Q2_K | 2.36GB |
| [sabia-7b.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [sabia-7b.IQ3_S.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [sabia-7b.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [sabia-7b.IQ3_M.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [sabia-7b.Q3_K.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q3_K.gguf) | Q3_K | 3.07GB |
| [sabia-7b.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [sabia-7b.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [sabia-7b.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [sabia-7b.Q4_0.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q4_0.gguf) | Q4_0 | 3.56GB |
| [sabia-7b.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [sabia-7b.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [sabia-7b.Q4_K.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q4_K.gguf) | Q4_K | 3.8GB |
| [sabia-7b.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [sabia-7b.Q4_1.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q4_1.gguf) | Q4_1 | 3.95GB |
| [sabia-7b.Q5_0.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q5_0.gguf) | Q5_0 | 4.33GB |
| [sabia-7b.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [sabia-7b.Q5_K.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q5_K.gguf) | Q5_K | 4.45GB |
| [sabia-7b.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [sabia-7b.Q5_1.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q5_1.gguf) | Q5_1 | 4.72GB |
| [sabia-7b.Q6_K.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q6_K.gguf) | Q6_K | 5.15GB |
| [sabia-7b.Q8_0.gguf](https://huggingface.co/RichardErkhov/maritaca-ai_-_sabia-7b-gguf/blob/main/sabia-7b.Q8_0.gguf) | Q8_0 | 4.88GB |
Original model description:
---
language:
- pt
model-index:
- name: sabia-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 55.07
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 47.71
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 41.41
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 46.68
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 1.89
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 58.34
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 61.93
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 64.13
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 46.64
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=maritaca-ai/sabia-7b
name: Open Portuguese LLM Leaderboard
---
Sabiá-7B is Portuguese language model developed by [Maritaca AI](https://www.maritaca.ai/).
**Input:** The model accepts only text input.
**Output:** The Model generates text only.
**Model Architecture:** Sabiá-7B is an auto-regressive language model that uses the same architecture of LLaMA-1-7B.
**Tokenizer:** It uses the same tokenizer as LLaMA-1-7B.
**Maximum sequence length:** 2048 tokens.
**Pretraining data:** The model was pretrained on 7 billion tokens from the Portuguese subset of ClueWeb22, starting with the weights of LLaMA-1-7B and further trained for an additional 10 billion tokens, approximately 1.4 epochs of the training dataset.
**Data Freshness:** The pretraining data has a cutoff of mid-2022.
**License:** The licensing is the same as LLaMA-1's, restricting the model's use to research purposes only.
**Paper:** For more details, please refer to our paper: [Sabiá: Portuguese Large Language Models](https://arxiv.org/pdf/2304.07880.pdf)
## Few-shot Example
Given that Sabiá-7B was trained solely on a language modeling objective without fine-tuning for instruction following, it is recommended for few-shot tasks rather than zero-shot tasks, like in the example below.
```python
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("maritaca-ai/sabia-7b")
model = LlamaForCausalLM.from_pretrained(
"maritaca-ai/sabia-7b",
device_map="auto", # Automatically loads the model in the GPU, if there is one. Requires pip install acelerate
low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16 # If your GPU does not support bfloat16, change to torch.float16
)
prompt = """Classifique a resenha de filme como "positiva" ou "negativa".
Resenha: Gostei muito do filme, é o melhor do ano!
Classe: positiva
Resenha: O filme deixa muito a desejar.
Classe: negativa
Resenha: Apesar de longo, valeu o ingresso.
Classe:"""
input_ids = tokenizer(prompt, return_tensors="pt")
output = model.generate(
input_ids["input_ids"].to("cuda"),
max_length=1024,
eos_token_id=tokenizer.encode("\n")) # Stop generation when a "\n" token is dectected
# The output contains the input tokens, so we have to skip them.
output = output[0][len(input_ids["input_ids"][0]):]
print(tokenizer.decode(output, skip_special_tokens=True))
```
If your GPU does not have enough RAM, try using int8 precision.
However, expect some degradation in the model output quality when compared to fp16 or bf16.
```python
model = LlamaForCausalLM.from_pretrained(
"maritaca-ai/sabia-7b",
device_map="auto",
low_cpu_mem_usage=True,
load_in_8bit=True, # Requires pip install bitsandbytes
)
```
## Results in Portuguese
Below we show the results on the Poeta benchmark, which consists of 14 Portuguese datasets.
For more information on the Normalized Preferred Metric (NPM), please refer to our paper.
|Model | NPM |
|--|--|
|LLaMA-1-7B| 33.0|
|LLaMA-2-7B| 43.7|
|Sabiá-7B| 48.5|
## Results in English
Below we show the average results on 6 English datasets: PIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OpenBookQA.
|Model | NPM |
|--|--|
|LLaMA-1-7B| 50.1|
|Sabiá-7B| 49.0|
## Citation
Please use the following bibtex to cite our paper:
```
@InProceedings{10.1007/978-3-031-45392-2_15,
author="Pires, Ramon
and Abonizio, Hugo
and Almeida, Thales Sales
and Nogueira, Rodrigo",
editor="Naldi, Murilo C.
and Bianchi, Reinaldo A. C.",
title="Sabi{\'a}: Portuguese Large Language Models",
booktitle="Intelligent Systems",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="226--240",
isbn="978-3-031-45392-2"
}
```
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/maritaca-ai/sabia-7b)
| Metric | Value |
|--------------------------|---------|
|Average |**47.09**|
|ENEM Challenge (No Images)| 55.07|
|BLUEX (No Images) | 47.71|
|OAB Exams | 41.41|
|Assin2 RTE | 46.68|
|Assin2 STS | 1.89|
|FaQuAD NLI | 58.34|
|HateBR Binary | 61.93|
|PT Hate Speech Binary | 64.13|
|tweetSentBR | 46.64|
|