RichardErkhov
commited on
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_2epochs - AWQ
|
11 |
+
- Model creator: https://huggingface.co/martimfasantos/
|
12 |
+
- Original model: https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_2epochs/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: apache-2.0
|
20 |
+
base_model: martimfasantos/tinyllama-1.1b-mt-sft-full
|
21 |
+
tags:
|
22 |
+
- alignment-handbook
|
23 |
+
- trl
|
24 |
+
- dpo
|
25 |
+
- generated_from_trainer
|
26 |
+
- trl
|
27 |
+
- dpo
|
28 |
+
- generated_from_trainer
|
29 |
+
datasets:
|
30 |
+
- haoranxu/ALMA-R-Preference
|
31 |
+
model-index:
|
32 |
+
- name: tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_2epochs
|
33 |
+
results: []
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_2epochs
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [martimfasantos/tinyllama-1.1b-mt-sft-full](https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-sft-full) on the haoranxu/ALMA-R-Preference dataset.
|
42 |
+
|
43 |
+
## Model description
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Intended uses & limitations
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training and evaluation data
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Training procedure
|
56 |
+
|
57 |
+
### Training hyperparameters
|
58 |
+
|
59 |
+
The following hyperparameters were used during training:
|
60 |
+
- learning_rate: 5e-08
|
61 |
+
- train_batch_size: 8
|
62 |
+
- eval_batch_size: 8
|
63 |
+
- seed: 42
|
64 |
+
- distributed_type: multi-GPU
|
65 |
+
- gradient_accumulation_steps: 2
|
66 |
+
- total_train_batch_size: 16
|
67 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
68 |
+
- lr_scheduler_type: cosine
|
69 |
+
- lr_scheduler_warmup_ratio: 0.1
|
70 |
+
- num_epochs: 2
|
71 |
+
|
72 |
+
### Training results
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.41.2
|
79 |
+
- Pytorch 2.1.2
|
80 |
+
- Datasets 2.20.0
|
81 |
+
- Tokenizers 0.19.1
|
82 |
+
|
83 |
+
|