RichardErkhov commited on
Commit
aec662f
1 Parent(s): ddc3591

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_adamw_2epochs - AWQ
11
+ - Model creator: https://huggingface.co/martimfasantos/
12
+ - Original model: https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_adamw_2epochs/
13
+
14
+
15
+
16
+
17
+ Original model description:
18
+ ---
19
+ license: apache-2.0
20
+ base_model: martimfasantos/tinyllama-1.1b-mt-sft-full
21
+ tags:
22
+ - alignment-handbook
23
+ - trl
24
+ - dpo
25
+ - generated_from_trainer
26
+ - trl
27
+ - dpo
28
+ - generated_from_trainer
29
+ datasets:
30
+ - haoranxu/ALMA-R-Preference
31
+ model-index:
32
+ - name: tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_adamw_2epochs
33
+ results: []
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # tinyllama-1.1b-mt-dpo-full_LR5e-8_BS16_adamw_2epochs
40
+
41
+ This model is a fine-tuned version of [martimfasantos/tinyllama-1.1b-mt-sft-full](https://huggingface.co/martimfasantos/tinyllama-1.1b-mt-sft-full) on the haoranxu/ALMA-R-Preference dataset.
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 5e-08
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - distributed_type: multi-GPU
65
+ - gradient_accumulation_steps: 2
66
+ - total_train_batch_size: 16
67
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
68
+ - lr_scheduler_type: cosine
69
+ - lr_scheduler_warmup_ratio: 0.1
70
+ - num_epochs: 2
71
+
72
+ ### Training results
73
+
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.2
79
+ - Pytorch 2.1.2
80
+ - Datasets 2.20.0
81
+ - Tokenizers 0.19.1
82
+
83
+