RichardErkhov
commited on
Commit
•
9089ba7
1
Parent(s):
1ab8dee
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
MultiPL-T-StarCoderBase_1b - AWQ
|
11 |
+
- Model creator: https://huggingface.co/nuprl/
|
12 |
+
- Original model: https://huggingface.co/nuprl/MultiPL-T-StarCoderBase_1b/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: bigscience-openrail-m
|
20 |
+
library_name: transformers
|
21 |
+
tags:
|
22 |
+
- code
|
23 |
+
- gpt_bigcode
|
24 |
+
datasets:
|
25 |
+
- nuprl/MultiPL-T
|
26 |
+
metrics:
|
27 |
+
- code_eval
|
28 |
+
model-index:
|
29 |
+
- name: MultiPLCoder-1b-OCaml
|
30 |
+
results:
|
31 |
+
- task:
|
32 |
+
type: text-generation
|
33 |
+
dataset:
|
34 |
+
name: MultiPL-HumanEval (Lua)
|
35 |
+
type: nuprl/MultiPL-E
|
36 |
+
metrics:
|
37 |
+
- type: pass@1
|
38 |
+
value: 0.173
|
39 |
+
name: pass@1
|
40 |
+
verified: true
|
41 |
+
- type: pass@1
|
42 |
+
value: 0.113
|
43 |
+
name: pass@1
|
44 |
+
verified: true
|
45 |
+
- type: pass@1
|
46 |
+
value: 0.097
|
47 |
+
name: pass@1
|
48 |
+
verified: true
|
49 |
+
---
|
50 |
+
# MultiPLCoder-1b
|
51 |
+
|
52 |
+
1 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the [MultiPL-T dataset](https://huggingface.co/datasets/nuprl/MultiPL-T).
|
53 |
+
These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
|
54 |
+
|
55 |
+
|
56 |
+
## Language Revision Index
|
57 |
+
|
58 |
+
This is the revision index for the best-performing models for their respective langauge.
|
59 |
+
|
60 |
+
| Langauge | Revision ID | Epoch |
|
61 |
+
| ------------- | ----------- | ----- |
|
62 |
+
| Lua | `7e96d931547e342ad0661cdd91236fe4ccf52545` | 3 |
|
63 |
+
| Racket | `2cdc541bee1db4da80c0b43384b0d6a0cacca5b2` | 5 |
|
64 |
+
| OCaml | `e8a24f9e2149cbda8c3cca264a53c2b361b7a031` | 6 |
|
65 |
+
|
66 |
+
## Usage
|
67 |
+
|
68 |
+
To utilize one of the models in this repository, you must first select a commit revision for that model from the table above.
|
69 |
+
For example, to use the Lua model:
|
70 |
+
```py
|
71 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-1b")
|
73 |
+
lua_revision="7e96d931547e342ad0661cdd91236fe4ccf52545"
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-1b", revision=lua_revision)
|
75 |
+
```
|
76 |
+
|
77 |
+
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
|
78 |
+
```py
|
79 |
+
toks = tokenizer.encode("-- Hello World", return_tensors="pt")
|
80 |
+
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=50)
|
81 |
+
print(tokenizer.decode(out[0], skip_special_tokens=True))
|
82 |
+
```
|
83 |
+
```
|
84 |
+
-- Hello World!
|
85 |
+
-- :param name: The name of the person to say hello to
|
86 |
+
-- :return: A greeting
|
87 |
+
local function say_hello(name)
|
88 |
+
return "Hello ".. name
|
89 |
+
end
|
90 |
+
```
|
91 |
+
|