RichardErkhov commited on
Commit
299d8af
·
verified ·
1 Parent(s): 58a2dbc

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +189 -0
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Mistral-NeMo-Minitron-8B-Base - GGUF
11
+ - Model creator: https://huggingface.co/nvidia/
12
+ - Original model: https://huggingface.co/nvidia/Mistral-NeMo-Minitron-8B-Base/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Mistral-NeMo-Minitron-8B-Base.Q2_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q2_K.gguf) | Q2_K | 3.1GB |
18
+ | [Mistral-NeMo-Minitron-8B-Base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.IQ3_XS.gguf) | IQ3_XS | 3.43GB |
19
+ | [Mistral-NeMo-Minitron-8B-Base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.IQ3_S.gguf) | IQ3_S | 3.59GB |
20
+ | [Mistral-NeMo-Minitron-8B-Base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q3_K_S.gguf) | Q3_K_S | 3.57GB |
21
+ | [Mistral-NeMo-Minitron-8B-Base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.IQ3_M.gguf) | IQ3_M | 3.7GB |
22
+ | [Mistral-NeMo-Minitron-8B-Base.Q3_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q3_K.gguf) | Q3_K | 3.92GB |
23
+ | [Mistral-NeMo-Minitron-8B-Base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q3_K_M.gguf) | Q3_K_M | 3.92GB |
24
+ | [Mistral-NeMo-Minitron-8B-Base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q3_K_L.gguf) | Q3_K_L | 4.23GB |
25
+ | [Mistral-NeMo-Minitron-8B-Base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.IQ4_XS.gguf) | IQ4_XS | 4.37GB |
26
+ | [Mistral-NeMo-Minitron-8B-Base.Q4_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q4_0.gguf) | Q4_0 | 4.55GB |
27
+ | [Mistral-NeMo-Minitron-8B-Base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.IQ4_NL.gguf) | IQ4_NL | 4.59GB |
28
+ | [Mistral-NeMo-Minitron-8B-Base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q4_K_S.gguf) | Q4_K_S | 4.57GB |
29
+ | [Mistral-NeMo-Minitron-8B-Base.Q4_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q4_K.gguf) | Q4_K | 4.79GB |
30
+ | [Mistral-NeMo-Minitron-8B-Base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q4_K_M.gguf) | Q4_K_M | 4.79GB |
31
+ | [Mistral-NeMo-Minitron-8B-Base.Q4_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q4_1.gguf) | Q4_1 | 5.0GB |
32
+ | [Mistral-NeMo-Minitron-8B-Base.Q5_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q5_0.gguf) | Q5_0 | 5.46GB |
33
+ | [Mistral-NeMo-Minitron-8B-Base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q5_K_S.gguf) | Q5_K_S | 5.46GB |
34
+ | [Mistral-NeMo-Minitron-8B-Base.Q5_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q5_K.gguf) | Q5_K | 5.59GB |
35
+ | [Mistral-NeMo-Minitron-8B-Base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q5_K_M.gguf) | Q5_K_M | 5.59GB |
36
+ | [Mistral-NeMo-Minitron-8B-Base.Q5_1.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q5_1.gguf) | Q5_1 | 5.92GB |
37
+ | [Mistral-NeMo-Minitron-8B-Base.Q6_K.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q6_K.gguf) | Q6_K | 6.44GB |
38
+ | [Mistral-NeMo-Minitron-8B-Base.Q8_0.gguf](https://huggingface.co/RichardErkhov/nvidia_-_Mistral-NeMo-Minitron-8B-Base-gguf/blob/main/Mistral-NeMo-Minitron-8B-Base.Q8_0.gguf) | Q8_0 | 8.33GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ license: other
46
+ license_name: nvidia-open-model-license
47
+ license_link: >-
48
+ https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
49
+ library_name: transformers
50
+ ---
51
+
52
+ # Mistral-NeMo-Minitron-8B-Base
53
+
54
+ ## Model Overview
55
+
56
+ Mistral-NeMo-Minitron-8B-Base is a base text-to-text model that can be adopted for a variety of natural language generation tasks. It is a large language model (LLM) obtained by pruning and distilling the Mistral-NeMo 12B; specifically, we prune the embedding dimension and MLP intermediate dimension in the model. Following pruning, we perform continued training with distillation using 380 billion tokens to arrive at the final model; we use the continuous pre-training data corpus used in Nemotron-4 15B for this purpose. Please refer to our [technical report](https://arxiv.org/abs/2408.11796) for more details.
57
+
58
+ **Model Developer:** NVIDIA
59
+
60
+ **Model Dates:** Mistral-NeMo-Minitron-8B-Base was trained between July 24, 2024 and August 10, 2024.
61
+
62
+ ## License
63
+
64
+ This model is released under the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf).
65
+
66
+ ## Model Architecture
67
+
68
+ Mistral-NeMo-Minitron-8B-Base uses a model embedding size of 4096, 32 attention heads, MLP intermediate dimension of 11520, with 40 layers in total. Additionally, it uses Grouped-Query Attention (GQA) and Rotary Position Embeddings (RoPE).
69
+
70
+ **Architecture Type:** Transformer Decoder (Auto-Regressive Language Model)
71
+
72
+ **Network Architecture:** Mistral-NeMo
73
+
74
+ **Input Type(s):** Text
75
+
76
+ **Input Format(s):** String
77
+
78
+ **Input Parameters:** One Dimensional (1D)
79
+
80
+ **Other Properties Related to Input:** Works well within 8k characters or less.
81
+
82
+ **Output Type(s):** Text
83
+
84
+ **Output Format:** String
85
+
86
+ **Output Parameters:** 1D
87
+
88
+ **Other Properties Related to Output:** None
89
+
90
+ ## Usage
91
+ Support for this model will be added in the upcoming `transformers` release. In the meantime, please install the library from source:
92
+ ```
93
+ pip install git+https://github.com/huggingface/transformers
94
+ ```
95
+ We can now run inference on this model:
96
+
97
+ ```python
98
+ import torch
99
+ from transformers import AutoTokenizer, AutoModelForCausalLM
100
+
101
+ # Load the tokenizer and model
102
+ model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
103
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
104
+
105
+ device = 'cuda'
106
+ dtype = torch.bfloat16
107
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
108
+
109
+ # Prepare the input text
110
+ prompt = 'Complete the paragraph: our solar system is'
111
+ inputs = tokenizer.encode(prompt, return_tensors='pt').to(model.device)
112
+
113
+ # Generate the output
114
+ outputs = model.generate(inputs, max_length=20)
115
+
116
+ # Decode and print the output
117
+ output_text = tokenizer.decode(outputs[0])
118
+ print(output_text)
119
+ ```
120
+
121
+ ## Software Integration
122
+ **Runtime Engine(s):**
123
+ * NeMo 24.05
124
+
125
+ **Supported Hardware Microarchitecture Compatibility:** <br>
126
+ * NVIDIA Ampere
127
+ * NVIDIA Blackwell
128
+ * NVIDIA Hopper
129
+ * NVIDIA Lovelace
130
+
131
+
132
+ **Operating System(s):** <br>
133
+ * Linux
134
+
135
+ ## Dataset & Training
136
+
137
+ **Data Collection Method by Dataset:** Automated
138
+
139
+ **Labeling Method by Dataset:** Not Applicable
140
+
141
+ **Properties:**
142
+ The training corpus for Mistral-NeMo-Minitron-8B-Base consists of English and multilingual text, as well as code. Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. In our continued training set, we introduce a small portion of question-answering, and alignment style data to improve model performance.
143
+
144
+ **Data Freshness:**
145
+ Training was done in 2024, the pretraining data has a cutoff of June 2023.
146
+
147
+ ## Evaluation Results
148
+
149
+ _5-shot performance._ Language Understanding evaluated using [Massive Multitask Language Understanding](https://arxiv.org/abs/2009.03300):
150
+
151
+ | Average |
152
+ | :---- |
153
+ | 69.5 |
154
+
155
+ _Zero-shot performance._ Evaluated using select datasets from the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) with additions:
156
+
157
+ | HellaSwag | Winogrande | GSM8K| ARC-Challenge | XLSum |
158
+ | :---- | :---- | :---- | :---- | :---- |
159
+ | 83.0 | 80.4 | 58.5 | 64.4 | 32.0
160
+
161
+ _Code generation performance._ Evaluated using [MBPP](https://github.com/google-research/google-research/tree/master/mbpp):
162
+ | Score |
163
+ | :---- |
164
+ | 43.77 |
165
+
166
+ ## Inference
167
+
168
+ **Engine:** TensorRT-LLM
169
+
170
+ **Test Hardware:** NVIDIA A100
171
+
172
+ **DType:** BFloat16
173
+
174
+ ## Limitations
175
+
176
+ The model was trained on data that contains toxic language, unsafe content, and societal biases originally crawled from the internet. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts. The model may generate answers that may be inaccurate, omit key information, or include irrelevant or redundant text producing socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
177
+
178
+ ## Ethical Considerations
179
+
180
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
181
+
182
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
183
+
184
+
185
+ ## References
186
+
187
+ * [Minitron: Compact Language Models via Pruning and Knowledge Distillation](https://arxiv.org/abs/2407.14679)
188
+ * [LLM Pruning and Distillation in Practice: The Minitron Approach](https://arxiv.org/abs/2408.11796)
189
+