RichardErkhov
commited on
Commit
•
86ed482
1
Parent(s):
33773a6
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
gemma-2-baku-2b-it - bnb 4bits
|
11 |
+
- Model creator: https://huggingface.co/rinna/
|
12 |
+
- Original model: https://huggingface.co/rinna/gemma-2-baku-2b-it/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
|
20 |
+
license: gemma
|
21 |
+
language:
|
22 |
+
- ja
|
23 |
+
- en
|
24 |
+
tags:
|
25 |
+
- gemma2
|
26 |
+
- conversational
|
27 |
+
base_model:
|
28 |
+
- google/gemma-2-2b
|
29 |
+
- google/gemma-2-2b-it
|
30 |
+
- rinna/gemma-2-baku-2b
|
31 |
+
base_model_relation: merge
|
32 |
+
pipeline_tag: text-generation
|
33 |
+
library_name: transformers
|
34 |
+
---
|
35 |
+
|
36 |
+
|
37 |
+
# `Gemma 2 Baku 2B Instruct (rinna/gemma-2-baku-2b-it)`
|
38 |
+
|
39 |
+
![rinna-icon](./rinna.png)
|
40 |
+
|
41 |
+
# Overview
|
42 |
+
|
43 |
+
The model is an instruction-tuned variant of [rinna/gemma-2-baku-2b](https://huggingface.co/rinna/gemma-2-baku-2b), utilizing Chat Vector and Odds Ratio Preference Optimization (ORPO) for fine-tuning. It adheres to the gemma-2 chat format.
|
44 |
+
|
45 |
+
| Size | Continual Pre-Training | Instruction-Tuning |
|
46 |
+
| :- | :- | :- |
|
47 |
+
| 2B | Gemma 2 Baku 2B [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b) | Gemma 2 Baku 2B Instruct [[HF]](https://huggingface.co/rinna/gemma-2-baku-2b-it) |
|
48 |
+
|
49 |
+
* **Model architecture**
|
50 |
+
|
51 |
+
A 26-layer, 2304-hidden-size transformer-based language model. Please refer to the [Gemma 2 Model Card](https://www.kaggle.com/models/google/gemma-2/) for detailed information on the model's architecture.
|
52 |
+
|
53 |
+
* **Training**
|
54 |
+
|
55 |
+
**Model merging.** The base model was endowed with instruction-following capabilities through a chat vector addition process. The chat vector was derived by subtracting the parameter vectors of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) from [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it), as follows.
|
56 |
+
|
57 |
+
~~~~text
|
58 |
+
rinna/gemma-2-baku-2b + 1.0 * (google/gemma-2-2b-it - google/gemma-2-2b)
|
59 |
+
~~~~
|
60 |
+
|
61 |
+
During this process, the embedding layer was excluded during the subtraction and addition of parameter vectors.
|
62 |
+
|
63 |
+
**ORPO** was applied using a subset of the following dataset to further refine the performance of the merged model.
|
64 |
+
|
65 |
+
- rinna's internal dataset
|
66 |
+
|
67 |
+
* **Contributors**
|
68 |
+
|
69 |
+
- [Xinqi Chen](https://huggingface.co/Keely0419)
|
70 |
+
- [Toshiaki Wakatsuki](https://huggingface.co/t-w)
|
71 |
+
- [Kei Sawada](https://huggingface.co/keisawada)
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
# Benchmarking
|
76 |
+
|
77 |
+
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
# How to use the model
|
82 |
+
|
83 |
+
~~~~python
|
84 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
85 |
+
import torch
|
86 |
+
|
87 |
+
model_id = "rinna/gemma-2-baku-2b-it"
|
88 |
+
dtype = torch.bfloat16
|
89 |
+
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
91 |
+
model = AutoModelForCausalLM.from_pretrained(
|
92 |
+
model_id,
|
93 |
+
device_map="cuda",
|
94 |
+
torch_dtype=dtype,
|
95 |
+
attn_implementation="eager",
|
96 |
+
)
|
97 |
+
|
98 |
+
chat = [
|
99 |
+
{ "role": "user", "content": "西田幾多郎とはどんな人物ですか?" },
|
100 |
+
]
|
101 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
102 |
+
|
103 |
+
input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
|
104 |
+
outputs = model.generate(
|
105 |
+
input_ids,
|
106 |
+
max_new_tokens=512,
|
107 |
+
)
|
108 |
+
|
109 |
+
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
|
110 |
+
print(response)
|
111 |
+
~~~~
|
112 |
+
|
113 |
+
It is recommended to use eager attention when conducting batch inference under bfloat16 precision.
|
114 |
+
Currently, Gemma 2 yields NaN values for input sequences with padding when the default attention mechanism (torch.scaled_dot_product_attention) is employed in conjunction with bfloat16.
|
115 |
+
|
116 |
+
---
|
117 |
+
|
118 |
+
# Tokenization
|
119 |
+
The model uses the original [google/gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) tokenizer.
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
# How to cite
|
124 |
+
```bibtex
|
125 |
+
@misc{rinna-gemma-2-baku-2b-it,
|
126 |
+
title = {rinna/gemma-2-baku-2b-it},
|
127 |
+
author = {Chen, Xinqi and Wakatsuki, Toshiaki and Sawada, Kei},
|
128 |
+
url = {https://huggingface.co/rinna/gemma-2-baku-2b-it}
|
129 |
+
}
|
130 |
+
|
131 |
+
@inproceedings{sawada2024release,
|
132 |
+
title = {Release of Pre-Trained Models for the {J}apanese Language},
|
133 |
+
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
|
134 |
+
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
135 |
+
month = {5},
|
136 |
+
year = {2024},
|
137 |
+
pages = {13898--13905},
|
138 |
+
url = {https://aclanthology.org/2024.lrec-main.1213},
|
139 |
+
note = {\url{https://arxiv.org/abs/2404.01657}}
|
140 |
+
}
|
141 |
+
```
|
142 |
+
---
|
143 |
+
|
144 |
+
# References
|
145 |
+
```bibtex
|
146 |
+
@article{gemma-2-2024,
|
147 |
+
title = {Gemma 2},
|
148 |
+
url = {https://www.kaggle.com/models/google/gemma-2},
|
149 |
+
publisher = {Kaggle},
|
150 |
+
author = {Gemma Team},
|
151 |
+
year = {2024}
|
152 |
+
}
|
153 |
+
|
154 |
+
@article{huang2023chat,
|
155 |
+
title = {Chat Vector: A Simple Approach to Equip LLMs with Instruction Following and Model Alignment in New Languages},
|
156 |
+
author = {Huang, Shih-Cheng and Li, Pin-Zu and Hsu, Yu-Chi and Chen, Kuang-Ming and Lin, Yu Tung and Hsiao, Shih-Kai and Tzong-Han Tsai, Richard and Lee, Hung-yi},
|
157 |
+
year = {2023},
|
158 |
+
url = {https://arxiv.org/abs/2310.04799}
|
159 |
+
}
|
160 |
+
|
161 |
+
@article{hong2024orpo,
|
162 |
+
title = {ORPO: Monolithic Preference Optimization without Reference Model},
|
163 |
+
author = {Hong, Jiwoo and Lee, Noah and Thorne, James},
|
164 |
+
year = {2024},
|
165 |
+
url = {https://arxiv.org/abs/2403.07691}
|
166 |
+
}
|
167 |
+
```
|
168 |
+
---
|
169 |
+
|
170 |
+
# License
|
171 |
+
[Gemma Terms of Use](https://ai.google.dev/gemma/terms)
|
172 |
+
|