RichardErkhov commited on
Commit
4a73a5b
1 Parent(s): 2aa6eae

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ Yarn-Mistral-7b-128k-sharded - GGUF
11
+ - Model creator: https://huggingface.co/yanismiraoui/
12
+ - Original model: https://huggingface.co/yanismiraoui/Yarn-Mistral-7b-128k-sharded/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [Yarn-Mistral-7b-128k-sharded.Q2_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q2_K.gguf) | Q2_K | 2.53GB |
18
+ | [Yarn-Mistral-7b-128k-sharded.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_XS.gguf) | IQ3_XS | 0.34GB |
19
+ | [Yarn-Mistral-7b-128k-sharded.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_S.gguf) | IQ3_S | 0.05GB |
20
+ | [Yarn-Mistral-7b-128k-sharded.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_S.gguf) | Q3_K_S | 0.03GB |
21
+ | [Yarn-Mistral-7b-128k-sharded.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_M.gguf) | IQ3_M | 0.0GB |
22
+ | [Yarn-Mistral-7b-128k-sharded.Q3_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K.gguf) | Q3_K | 0.0GB |
23
+ | [Yarn-Mistral-7b-128k-sharded.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_M.gguf) | Q3_K_M | 0.0GB |
24
+ | [Yarn-Mistral-7b-128k-sharded.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_L.gguf) | Q3_K_L | 0.0GB |
25
+ | [Yarn-Mistral-7b-128k-sharded.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ4_XS.gguf) | IQ4_XS | 0.0GB |
26
+ | [Yarn-Mistral-7b-128k-sharded.Q4_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_0.gguf) | Q4_0 | 0.0GB |
27
+ | [Yarn-Mistral-7b-128k-sharded.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ4_NL.gguf) | IQ4_NL | 0.0GB |
28
+ | [Yarn-Mistral-7b-128k-sharded.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K_S.gguf) | Q4_K_S | 0.0GB |
29
+ | [Yarn-Mistral-7b-128k-sharded.Q4_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K.gguf) | Q4_K | 0.0GB |
30
+ | [Yarn-Mistral-7b-128k-sharded.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K_M.gguf) | Q4_K_M | 0.0GB |
31
+ | [Yarn-Mistral-7b-128k-sharded.Q4_1.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_1.gguf) | Q4_1 | 0.0GB |
32
+ | [Yarn-Mistral-7b-128k-sharded.Q5_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_0.gguf) | Q5_0 | 0.0GB |
33
+ | [Yarn-Mistral-7b-128k-sharded.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K_S.gguf) | Q5_K_S | 0.0GB |
34
+ | [Yarn-Mistral-7b-128k-sharded.Q5_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K.gguf) | Q5_K | 0.0GB |
35
+ | [Yarn-Mistral-7b-128k-sharded.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K_M.gguf) | Q5_K_M | 0.0GB |
36
+ | [Yarn-Mistral-7b-128k-sharded.Q5_1.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_1.gguf) | Q5_1 | 0.0GB |
37
+ | [Yarn-Mistral-7b-128k-sharded.Q6_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q6_K.gguf) | Q6_K | 0.0GB |
38
+ | [Yarn-Mistral-7b-128k-sharded.Q8_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q8_0.gguf) | Q8_0 | 0.0GB |
39
+
40
+
41
+
42
+
43
+ Original model description:
44
+ ---
45
+ datasets:
46
+ - emozilla/yarn-train-tokenized-16k-mistral
47
+ metrics:
48
+ - perplexity
49
+ library_name: transformers
50
+ license: apache-2.0
51
+ language:
52
+ - en
53
+ ---
54
+
55
+
56
+ ## This repo contains a SHARDED version of: https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k
57
+
58
+ ### Huge thanks to the publishers for their amazing work, all credits go to them: https://huggingface.co/NousResearch
59
+
60
+ # Model Card: Nous-Yarn-Mistral-7b-128k
61
+
62
+ [Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
63
+ [GitHub](https://github.com/jquesnelle/yarn)
64
+ ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/mistral/data/proofpile-long-small-mistral.csv.png)
65
+
66
+ ## Model Description
67
+
68
+ Nous-Yarn-Mistral-7b-128k is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method.
69
+ It is an extension of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and supports a 128k token context window.
70
+
71
+ To use, pass `trust_remote_code=True` when loading the model, for example
72
+
73
+ ```python
74
+ model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Mistral-7b-128k",
75
+ use_flash_attention_2=True,
76
+ torch_dtype=torch.bfloat16,
77
+ device_map="auto",
78
+ trust_remote_code=True)
79
+ ```
80
+
81
+ In addition you will need to use the latest version of `transformers` (until 4.35 comes out)
82
+ ```sh
83
+ pip install git+https://github.com/huggingface/transformers
84
+ ```
85
+
86
+ ## Benchmarks
87
+
88
+ Long context benchmarks:
89
+ | Model | Context Window | 8k PPL | 16k PPL | 32k PPL | 64k PPL | 128k PPL |
90
+ |-------|---------------:|------:|----------:|-----:|-----:|------------:|
91
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 2.96 | - | - | - | - |
92
+ | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.04 | 2.65 | 2.44 | 2.20 | - |
93
+ | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.08 | 2.68 | 2.47 | 2.24 | 2.19 |
94
+
95
+ Short context benchmarks showing that quality degradation is minimal:
96
+ | Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
97
+ |-------|---------------:|------:|----------:|-----:|------------:|
98
+ | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 |
99
+ | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 |
100
+ | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 |
101
+
102
+ ## Collaborators
103
+
104
+ - [bloc97](https://github.com/bloc97): Methods, paper and evals
105
+ - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
106
+ - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
107
+ - [honglu2875](https://github.com/honglu2875): Paper and evals
108
+
109
+ The authors would like to thank LAION AI for their support of compute for this model.
110
+ It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.
111
+