RichardErkhov
commited on
Commit
•
4a73a5b
1
Parent(s):
2aa6eae
uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
Yarn-Mistral-7b-128k-sharded - GGUF
|
11 |
+
- Model creator: https://huggingface.co/yanismiraoui/
|
12 |
+
- Original model: https://huggingface.co/yanismiraoui/Yarn-Mistral-7b-128k-sharded/
|
13 |
+
|
14 |
+
|
15 |
+
| Name | Quant method | Size |
|
16 |
+
| ---- | ---- | ---- |
|
17 |
+
| [Yarn-Mistral-7b-128k-sharded.Q2_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q2_K.gguf) | Q2_K | 2.53GB |
|
18 |
+
| [Yarn-Mistral-7b-128k-sharded.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_XS.gguf) | IQ3_XS | 0.34GB |
|
19 |
+
| [Yarn-Mistral-7b-128k-sharded.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_S.gguf) | IQ3_S | 0.05GB |
|
20 |
+
| [Yarn-Mistral-7b-128k-sharded.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_S.gguf) | Q3_K_S | 0.03GB |
|
21 |
+
| [Yarn-Mistral-7b-128k-sharded.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ3_M.gguf) | IQ3_M | 0.0GB |
|
22 |
+
| [Yarn-Mistral-7b-128k-sharded.Q3_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K.gguf) | Q3_K | 0.0GB |
|
23 |
+
| [Yarn-Mistral-7b-128k-sharded.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_M.gguf) | Q3_K_M | 0.0GB |
|
24 |
+
| [Yarn-Mistral-7b-128k-sharded.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q3_K_L.gguf) | Q3_K_L | 0.0GB |
|
25 |
+
| [Yarn-Mistral-7b-128k-sharded.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ4_XS.gguf) | IQ4_XS | 0.0GB |
|
26 |
+
| [Yarn-Mistral-7b-128k-sharded.Q4_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_0.gguf) | Q4_0 | 0.0GB |
|
27 |
+
| [Yarn-Mistral-7b-128k-sharded.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.IQ4_NL.gguf) | IQ4_NL | 0.0GB |
|
28 |
+
| [Yarn-Mistral-7b-128k-sharded.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K_S.gguf) | Q4_K_S | 0.0GB |
|
29 |
+
| [Yarn-Mistral-7b-128k-sharded.Q4_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K.gguf) | Q4_K | 0.0GB |
|
30 |
+
| [Yarn-Mistral-7b-128k-sharded.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_K_M.gguf) | Q4_K_M | 0.0GB |
|
31 |
+
| [Yarn-Mistral-7b-128k-sharded.Q4_1.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q4_1.gguf) | Q4_1 | 0.0GB |
|
32 |
+
| [Yarn-Mistral-7b-128k-sharded.Q5_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_0.gguf) | Q5_0 | 0.0GB |
|
33 |
+
| [Yarn-Mistral-7b-128k-sharded.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K_S.gguf) | Q5_K_S | 0.0GB |
|
34 |
+
| [Yarn-Mistral-7b-128k-sharded.Q5_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K.gguf) | Q5_K | 0.0GB |
|
35 |
+
| [Yarn-Mistral-7b-128k-sharded.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_K_M.gguf) | Q5_K_M | 0.0GB |
|
36 |
+
| [Yarn-Mistral-7b-128k-sharded.Q5_1.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q5_1.gguf) | Q5_1 | 0.0GB |
|
37 |
+
| [Yarn-Mistral-7b-128k-sharded.Q6_K.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q6_K.gguf) | Q6_K | 0.0GB |
|
38 |
+
| [Yarn-Mistral-7b-128k-sharded.Q8_0.gguf](https://huggingface.co/RichardErkhov/yanismiraoui_-_Yarn-Mistral-7b-128k-sharded-gguf/blob/main/Yarn-Mistral-7b-128k-sharded.Q8_0.gguf) | Q8_0 | 0.0GB |
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
Original model description:
|
44 |
+
---
|
45 |
+
datasets:
|
46 |
+
- emozilla/yarn-train-tokenized-16k-mistral
|
47 |
+
metrics:
|
48 |
+
- perplexity
|
49 |
+
library_name: transformers
|
50 |
+
license: apache-2.0
|
51 |
+
language:
|
52 |
+
- en
|
53 |
+
---
|
54 |
+
|
55 |
+
|
56 |
+
## This repo contains a SHARDED version of: https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k
|
57 |
+
|
58 |
+
### Huge thanks to the publishers for their amazing work, all credits go to them: https://huggingface.co/NousResearch
|
59 |
+
|
60 |
+
# Model Card: Nous-Yarn-Mistral-7b-128k
|
61 |
+
|
62 |
+
[Preprint (arXiv)](https://arxiv.org/abs/2309.00071)
|
63 |
+
[GitHub](https://github.com/jquesnelle/yarn)
|
64 |
+
![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/mistral/data/proofpile-long-small-mistral.csv.png)
|
65 |
+
|
66 |
+
## Model Description
|
67 |
+
|
68 |
+
Nous-Yarn-Mistral-7b-128k is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method.
|
69 |
+
It is an extension of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and supports a 128k token context window.
|
70 |
+
|
71 |
+
To use, pass `trust_remote_code=True` when loading the model, for example
|
72 |
+
|
73 |
+
```python
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Mistral-7b-128k",
|
75 |
+
use_flash_attention_2=True,
|
76 |
+
torch_dtype=torch.bfloat16,
|
77 |
+
device_map="auto",
|
78 |
+
trust_remote_code=True)
|
79 |
+
```
|
80 |
+
|
81 |
+
In addition you will need to use the latest version of `transformers` (until 4.35 comes out)
|
82 |
+
```sh
|
83 |
+
pip install git+https://github.com/huggingface/transformers
|
84 |
+
```
|
85 |
+
|
86 |
+
## Benchmarks
|
87 |
+
|
88 |
+
Long context benchmarks:
|
89 |
+
| Model | Context Window | 8k PPL | 16k PPL | 32k PPL | 64k PPL | 128k PPL |
|
90 |
+
|-------|---------------:|------:|----------:|-----:|-----:|------------:|
|
91 |
+
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 2.96 | - | - | - | - |
|
92 |
+
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.04 | 2.65 | 2.44 | 2.20 | - |
|
93 |
+
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.08 | 2.68 | 2.47 | 2.24 | 2.19 |
|
94 |
+
|
95 |
+
Short context benchmarks showing that quality degradation is minimal:
|
96 |
+
| Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA |
|
97 |
+
|-------|---------------:|------:|----------:|-----:|------------:|
|
98 |
+
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 |
|
99 |
+
| [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 |
|
100 |
+
| [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 |
|
101 |
+
|
102 |
+
## Collaborators
|
103 |
+
|
104 |
+
- [bloc97](https://github.com/bloc97): Methods, paper and evals
|
105 |
+
- [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals
|
106 |
+
- [@EnricoShippole](https://twitter.com/EnricoShippole): Model training
|
107 |
+
- [honglu2875](https://github.com/honglu2875): Paper and evals
|
108 |
+
|
109 |
+
The authors would like to thank LAION AI for their support of compute for this model.
|
110 |
+
It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.
|
111 |
+
|