RichardWang
commited on
Commit
·
2f88e34
1
Parent(s):
5965276
add model
Browse files- config.json +22 -0
- configuration_tsp.py +32 -0
- modeling_tsp.py +506 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TSPModelForPretraining"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_tsp.TSPConfig",
|
7 |
+
"AutoModelForPreTraining": "modeling_tsp.TSPModelForPretraining"
|
8 |
+
},
|
9 |
+
"dropout_prob": 0.1,
|
10 |
+
"embedding_size": 128,
|
11 |
+
"hidden_size": 256,
|
12 |
+
"intermediate_size": 1024,
|
13 |
+
"max_sequence_length": 128,
|
14 |
+
"model_type": "tsp",
|
15 |
+
"num_attention_heads": 4,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.17.0",
|
21 |
+
"vocab_size": 30522
|
22 |
+
}
|
configuration_tsp.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
|
4 |
+
class TSPConfig(PretrainedConfig):
|
5 |
+
model_type = "tsp"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
embedding_size=128,
|
10 |
+
hidden_size=256,
|
11 |
+
num_hidden_layers=12,
|
12 |
+
num_attention_heads=4,
|
13 |
+
intermediate_size=1024,
|
14 |
+
dropout_prob=0.1,
|
15 |
+
max_sequence_length=128,
|
16 |
+
position_embedding_type="absolute",
|
17 |
+
pad_token_id=0,
|
18 |
+
vocab_size=30522,
|
19 |
+
**kwargs
|
20 |
+
):
|
21 |
+
assert hidden_size % num_attention_heads == 0
|
22 |
+
assert position_embedding_type in ["absolute", "rotary"]
|
23 |
+
self.vocab_size = vocab_size
|
24 |
+
self.embedding_size = embedding_size
|
25 |
+
self.hidden_size = hidden_size
|
26 |
+
self.num_hidden_layers = num_hidden_layers
|
27 |
+
self.num_attention_heads = num_attention_heads
|
28 |
+
self.intermediate_size = intermediate_size
|
29 |
+
self.dropout_prob = dropout_prob
|
30 |
+
self.max_sequence_length = max_sequence_length
|
31 |
+
self.position_embedding_type = position_embedding_type
|
32 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
modeling_tsp.py
ADDED
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# A BERT model that
|
2 |
+
# - has embedding projector when embedding_size != hiddne_size, like ELECTRA
|
3 |
+
# - the attention use one linear projection to generate query, key, value at once to get faster
|
4 |
+
# - is able to choose rotary position embedding
|
5 |
+
|
6 |
+
from copy import deepcopy
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel
|
12 |
+
from .configuration_tsp import TSPConfig
|
13 |
+
|
14 |
+
|
15 |
+
class TSPPreTrainedModel(PreTrainedModel):
|
16 |
+
config_class = TSPConfig
|
17 |
+
base_model_prefix = "tsp"
|
18 |
+
|
19 |
+
def _init_weights(self, module):
|
20 |
+
"""Initialize the weights"""
|
21 |
+
if isinstance(module, nn.Linear):
|
22 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
23 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
24 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
25 |
+
if module.bias is not None:
|
26 |
+
module.bias.data.zero_()
|
27 |
+
elif isinstance(module, nn.Embedding):
|
28 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
29 |
+
if module.padding_idx is not None:
|
30 |
+
module.weight.data[module.padding_idx].zero_()
|
31 |
+
elif isinstance(module, nn.LayerNorm):
|
32 |
+
module.bias.data.zero_()
|
33 |
+
module.weight.data.fill_(1.0)
|
34 |
+
|
35 |
+
# ====================================
|
36 |
+
# Pretraining Model
|
37 |
+
# ====================================
|
38 |
+
|
39 |
+
|
40 |
+
class TSPModelForPretraining(TSPPreTrainedModel):
|
41 |
+
def __init__(self, config, use_electra=False):
|
42 |
+
super().__init__(config)
|
43 |
+
self.backbone = TSPModel(config)
|
44 |
+
if use_electra:
|
45 |
+
mlm_config = deepcopy(config)
|
46 |
+
mlm_config.hidden_size /= config.generator_size_divisor
|
47 |
+
mlm_config.intermediate_size /= config.generator_size_divisor
|
48 |
+
mlm_config.num_attention_heads /= config.generator_size_divisor
|
49 |
+
self.mlm_backbone = TSPModel(mlm_config)
|
50 |
+
self.mlm_head = MaskedLMHead(
|
51 |
+
mlm_config, word_embeddings=self.mlm_backbone.embeddings.word_embeddings
|
52 |
+
)
|
53 |
+
self.rtd_backbone = self.backbone
|
54 |
+
self.rtd_backbone.embeddings = self.mlm_backbone.embeddings
|
55 |
+
self.rtd_head = ReplacedTokenDiscriminationHead(config)
|
56 |
+
else:
|
57 |
+
self.mlm_backbone = self.backbone
|
58 |
+
self.mlm_head = MaskedLMHead(config)
|
59 |
+
self.apply(self._init_weights)
|
60 |
+
|
61 |
+
def forward(self, *args, **kwargs):
|
62 |
+
raise NotImplementedError(
|
63 |
+
"Refer to the implementation of text structrue prediction task for how to use the model."
|
64 |
+
)
|
65 |
+
|
66 |
+
def mlm_forward(
|
67 |
+
self,
|
68 |
+
corrupted_ids, # <int>(B,L), partially masked/replaced input token ids
|
69 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
70 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
71 |
+
mlm_selected=None, # <bool>(B,L), True at mlm selected positiosns. Calculate logits at mlm selected positions if not None.
|
72 |
+
):
|
73 |
+
hidden_states = self.mlm_backbone(
|
74 |
+
input_ids=corrupted_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
token_type_ids=token_type_ids,
|
77 |
+
) # (B,L,D)
|
78 |
+
return self.mlm_head(
|
79 |
+
hidden_states, is_selected=mlm_selected
|
80 |
+
) # (#mlm selected, vocab size)/ (B,L,vocab size)
|
81 |
+
|
82 |
+
def rtd_forward(
|
83 |
+
self,
|
84 |
+
corrupted_ids, # <int>(B,L), partially replaced input token ids
|
85 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
86 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
87 |
+
):
|
88 |
+
hidden_states = self.rtd_backbone(
|
89 |
+
input_ids=corrupted_ids,
|
90 |
+
attention_mask=attention_mask,
|
91 |
+
token_type_ids=token_type_ids,
|
92 |
+
) # (B,L,D)
|
93 |
+
return self.rtd_backbone(hidden_states) # (B,L)
|
94 |
+
|
95 |
+
def tsp_forward(
|
96 |
+
self, hidden_states, # (B,L,D)
|
97 |
+
):
|
98 |
+
raise NotImplementedError
|
99 |
+
|
100 |
+
|
101 |
+
class MaskedLMHead(nn.Module):
|
102 |
+
def __init__(self, config, word_embeddings=None):
|
103 |
+
super().__init__()
|
104 |
+
self.linear = nn.Linear(config.hidden_size, config.embedding_size)
|
105 |
+
self.norm = nn.LayerNorm(config.embedding_size)
|
106 |
+
self.predictor = nn.Linear(config.embedding_size, config.vocab_size)
|
107 |
+
if word_embeddings is not None:
|
108 |
+
self.predictor.weight = word_embeddings.weight
|
109 |
+
|
110 |
+
def forward(
|
111 |
+
self,
|
112 |
+
x, # (B,L,D)
|
113 |
+
is_selected=None, # <bool>(B,L), True at positions choosed by mlm probability
|
114 |
+
):
|
115 |
+
if is_selected is not None:
|
116 |
+
# Only mlm positions are counted in loss, so we can apply output layer computation only to
|
117 |
+
# those positions to significantly reduce compuatational cost
|
118 |
+
x = x[is_selected] # ( #selected, D)
|
119 |
+
x = self.linear(x) # (B,L,E)/(#selected,E)
|
120 |
+
x = F.gelu(x) # (B,L,E)/(#selected,E)
|
121 |
+
x = self.norm(x) # (B,L,E)/(#selected,E)
|
122 |
+
return self.predictor(x) # (B,L,V)/(#selected,V)
|
123 |
+
|
124 |
+
|
125 |
+
class ReplacedTokenDiscriminationHead(nn.Module):
|
126 |
+
def __init__(self, config):
|
127 |
+
super().__init__()
|
128 |
+
self.linear = nn.Linear(config.hidden_size, config.hidden_size)
|
129 |
+
self.predictor = nn.Linear(config.hidden_size, 1)
|
130 |
+
|
131 |
+
def forward(self, x): # (B,L,D)
|
132 |
+
x = self.linear(x) # (B,L,D)
|
133 |
+
x = F.gelu(x)
|
134 |
+
x = self.predictor(x) # (B,L,1)
|
135 |
+
return x.squeeze(-1) # (B,L)
|
136 |
+
|
137 |
+
|
138 |
+
# ====================================
|
139 |
+
# Finetuning Model
|
140 |
+
# ====================================
|
141 |
+
|
142 |
+
|
143 |
+
class TSPModelForTokenClassification(TSPPreTrainedModel):
|
144 |
+
def __init__(self, config, num_classes):
|
145 |
+
super().__init__(config)
|
146 |
+
self.backbone = TSPModel(config)
|
147 |
+
self.head = TokenClassificationHead(config, num_classes)
|
148 |
+
self.apply(self._init_weights)
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
input_ids, # <int>(B,L)
|
153 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
154 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
155 |
+
):
|
156 |
+
hidden_states = self.backbone(
|
157 |
+
input_ids=input_ids,
|
158 |
+
attention_mask=attention_mask,
|
159 |
+
token_type_ids=token_type_ids,
|
160 |
+
) # (B,L,D)
|
161 |
+
return self.head(hidden_states) # (B,L,C)
|
162 |
+
|
163 |
+
|
164 |
+
class TokenClassificationHead(nn.Module):
|
165 |
+
def __init__(self, config, num_classes):
|
166 |
+
super().__init__()
|
167 |
+
self.dropout = nn.Dropout(c.dropout_prob)
|
168 |
+
self.classifier = nn.Linear(c.hidden_size, num_classes)
|
169 |
+
|
170 |
+
def forward(self, x): # (B,L,D)
|
171 |
+
x = self.dropout(x) # (B,L,D)
|
172 |
+
x = self.classifier(x) # (B,L,C)
|
173 |
+
return x # (B,L,C)
|
174 |
+
|
175 |
+
|
176 |
+
class TSPModelForSequenceClassification(TSPPreTrainedModel):
|
177 |
+
def __init__(self, config, num_classes):
|
178 |
+
super().__init__(config)
|
179 |
+
self.backbone = TSPModel(config)
|
180 |
+
self.head = SequenceClassififcationHead(config, num_classes)
|
181 |
+
self.apply(self._init_weights)
|
182 |
+
|
183 |
+
def forward(
|
184 |
+
self,
|
185 |
+
input_ids, # <int>(B,L)
|
186 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
187 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
188 |
+
):
|
189 |
+
hidden_states = self.backbone(
|
190 |
+
input_ids=input_ids,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
token_type_ids=token_type_ids,
|
193 |
+
) # (B,L,D)
|
194 |
+
return self.head(hidden_states) # (B,L,C)
|
195 |
+
|
196 |
+
|
197 |
+
class SequenceClassififcationHead(nn.Module):
|
198 |
+
def __init__(self, config, num_classes):
|
199 |
+
super().__init__()
|
200 |
+
self.dropout = nn.Dropout(config.dropout_prob)
|
201 |
+
self.classifier = nn.Linear(config.hidden_size, num_classes)
|
202 |
+
|
203 |
+
def forward(
|
204 |
+
self, x, # (B,L,D)
|
205 |
+
):
|
206 |
+
x = x[:, 0, :] # (B,D), CLS token is taken
|
207 |
+
x = self.dropout(x) # (B,D)
|
208 |
+
return self.classifier(x) # (B,C)
|
209 |
+
|
210 |
+
|
211 |
+
class TSPModelForQuestionAnswering(TSPPreTrainedModel):
|
212 |
+
def __init__(self, config, num_classes):
|
213 |
+
super().__init__()
|
214 |
+
self.backbone = TSPModel(config)
|
215 |
+
self.head = SequenceClassififcationHead(config, num_classes)
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
input_ids, # <int>(B,L)
|
220 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
221 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
222 |
+
):
|
223 |
+
hidden_states = self.backbone(
|
224 |
+
input_ids=input_ids,
|
225 |
+
attention_mask=attention_mask,
|
226 |
+
token_type_ids=token_type_ids,
|
227 |
+
) # (B,L,D)
|
228 |
+
return self.head(hidden_states) # (B,L), (B,L), (B)/None
|
229 |
+
|
230 |
+
|
231 |
+
class SquadHead(nn.Module):
|
232 |
+
def __init__(
|
233 |
+
self, config, beam_size, predict_answerability,
|
234 |
+
):
|
235 |
+
super().__init__()
|
236 |
+
self.beam_size = beam_size
|
237 |
+
self.predict_answerability = predict_answerability
|
238 |
+
|
239 |
+
# answer start position predictor
|
240 |
+
self.start_predictor = nn.Linear(config.hidden_size, 1)
|
241 |
+
|
242 |
+
# answer end position predictor
|
243 |
+
self.end_predictor = nn.Sequential(
|
244 |
+
nn.Linear(config.hidden_size * 2, 512), nn.GELU(), nn.Linear(512, 1),
|
245 |
+
)
|
246 |
+
|
247 |
+
# answerability_predictor
|
248 |
+
if predict_answerability:
|
249 |
+
self.answerability_predictor = nn.Sequential(
|
250 |
+
nn.Linear(config.hidden_size * 2, 512), nn.GELU(), nn.Linear(512, 1),
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
self.answerability_predictor = None
|
254 |
+
|
255 |
+
def forward(
|
256 |
+
self,
|
257 |
+
hidden_states, # (B,L,D)
|
258 |
+
token_type_ids, # <int>(B,L), 0/1 for first sentence (question) or pad, 1 for second sentence (context)
|
259 |
+
answer_start_position=None, # train/eval: <int>(B)/None
|
260 |
+
):
|
261 |
+
|
262 |
+
# Possible range for answer. Note CLS token is also possible to say it is unanswerable
|
263 |
+
answer_mask = token_type_ids # (B,L)
|
264 |
+
last_sep = answer_mask.cumsum(dim=1) == answer_mask.sum(
|
265 |
+
dim=1, keepdim=True
|
266 |
+
) # (B,L), True if it is the last SEP or token after it
|
267 |
+
answer_mask = answer_mask * ~last_sep
|
268 |
+
answer_mask[:, 0] = 1
|
269 |
+
answer_mask = answer_mask.bool()
|
270 |
+
|
271 |
+
# preidct start positions
|
272 |
+
start_logits, start_top_hidden_states = self._calculate_start(
|
273 |
+
hidden_states, answer_mask, answer_start_position
|
274 |
+
) # (B,L) , None/ (B,1,D)/ (B,k,D)
|
275 |
+
|
276 |
+
# predict end positions
|
277 |
+
end_logits = self._calculate_end_logits(
|
278 |
+
hidden_states, start_top_hidden_states, answer_mask,
|
279 |
+
) # (B,L) / (B,k,L)
|
280 |
+
|
281 |
+
# (optional) preidct answerability
|
282 |
+
answerability_logits = None
|
283 |
+
if self.answerability_predictor is not None:
|
284 |
+
answerability_logits = self._calculate_answerability_logits(
|
285 |
+
hidden_states, start_logits
|
286 |
+
) # (B)
|
287 |
+
|
288 |
+
return start_logits, end_logits, answerability_logits
|
289 |
+
|
290 |
+
def _calculate_start(self, hidden_states, answer_mask, start_positions):
|
291 |
+
start_logits = self.start_predictor(hidden_states).squeeze(-1) # (B, L)
|
292 |
+
start_logits = start_logits.masked_fill(~answer_mask, -float("inf")) # (B,L)
|
293 |
+
start_top_indices, start_top_hidden_states = None, None
|
294 |
+
if self.training:
|
295 |
+
start_top_indices = start_positions # (B,)
|
296 |
+
else:
|
297 |
+
k = self.beam_size
|
298 |
+
_, start_top_indices = start_logits.topk(k=k, dim=-1) # (B,k)
|
299 |
+
start_top_hidden_states = torch.stack(
|
300 |
+
[
|
301 |
+
hiddens.index_select(dim=0, index=index)
|
302 |
+
for hiddens, index in zip(hidden_states, start_top_indices)
|
303 |
+
]
|
304 |
+
) # train: (B,1,D)/ eval: (B,k,D)
|
305 |
+
return start_logits, start_top_hidden_states
|
306 |
+
|
307 |
+
def _calculate_end_logits(
|
308 |
+
self, hidden_states, start_top_hidden_states, answer_mask
|
309 |
+
):
|
310 |
+
B, L, D = hidden_states.shape
|
311 |
+
start_tophiddens = start_top_hidden_states.view(B, -1, 1, D).expand(
|
312 |
+
-1, -1, L, -1
|
313 |
+
) # train: (B,1,L,D) / eval: (B,k,L,D)
|
314 |
+
end_hidden_states = torch.cat(
|
315 |
+
[
|
316 |
+
start_tophiddens,
|
317 |
+
hidden_states.view(B, 1, L, D).expand_as(start_tophiddens),
|
318 |
+
],
|
319 |
+
dim=-1,
|
320 |
+
) # train: (B,1,L,2D) / eval: (B,k,L,2D)
|
321 |
+
end_logits = self.end_predictor(end_hidden_states).squeeze(-1) # (B,1/k,L)
|
322 |
+
end_logits = end_logits.masked_fill(
|
323 |
+
~answer_mask.view(B, 1, L), -float("inf")
|
324 |
+
) # train: (B,1,L) / eval: (B,k,L)
|
325 |
+
end_logits = end_logits.squeeze(1) # train: (B,L) / eval: (B,k,L)
|
326 |
+
|
327 |
+
return end_logits
|
328 |
+
|
329 |
+
def _calculate_answerability_logits(self, hidden_states, start_logits):
|
330 |
+
answerability_hidden_states = hidden_states[:, 0, :] # (B,D)
|
331 |
+
start_probs = start_logits.softmax(dim=-1).unsqueeze(-1) # (B,L,1)
|
332 |
+
start_featrues = (start_probs * hidden_states).sum(dim=1) # (B,D)
|
333 |
+
answerability_hidden_states = torch.cat(
|
334 |
+
[answerability_hidden_states, start_featrues], dim=-1
|
335 |
+
) # (B,2D)
|
336 |
+
answerability_logits = self.answerability_predictor(
|
337 |
+
answerability_hidden_states
|
338 |
+
) # (B,1)
|
339 |
+
return answerability_logits.squeeze(-1) # (B,)
|
340 |
+
|
341 |
+
|
342 |
+
# ====================================
|
343 |
+
# Backbone (Transformer Encoder)
|
344 |
+
# ====================================
|
345 |
+
|
346 |
+
|
347 |
+
class TSPModel(TSPPreTrainedModel):
|
348 |
+
config_class = TSPConfig
|
349 |
+
base_model_prefix = "tsp"
|
350 |
+
|
351 |
+
def __init__(self, config):
|
352 |
+
super().__init__(config)
|
353 |
+
self.embeddings = Embeddings(config)
|
354 |
+
if config.embedding_size != config.hidden_size:
|
355 |
+
self.embeddings_project = nn.Linear(
|
356 |
+
config.embedding_size, config.hidden_size
|
357 |
+
)
|
358 |
+
self.layers = nn.ModuleList(
|
359 |
+
EncoderLayer(config) for _ in range(config.num_hidden_layers)
|
360 |
+
)
|
361 |
+
self.apply(self._init_weights)
|
362 |
+
|
363 |
+
def forward(
|
364 |
+
self,
|
365 |
+
input_ids, # <int>(B,L)
|
366 |
+
attention_mask, # <int>(B,L), 1 / 0 for tokens that are not attended/ attended
|
367 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
368 |
+
):
|
369 |
+
x = self.embeddings(
|
370 |
+
input_ids=input_ids, token_type_ids=token_type_ids
|
371 |
+
) # (B,L,E)
|
372 |
+
if hasattr(self, "embeddings_project"):
|
373 |
+
x = self.embeddings_project(x) # (B,L,D)
|
374 |
+
|
375 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
376 |
+
attention_mask=attention_mask,
|
377 |
+
input_shape=input_ids.shape,
|
378 |
+
device=input_ids.device,
|
379 |
+
) # (B,1,1,L)
|
380 |
+
|
381 |
+
for layer_idx, layer in enumerate(self.layers):
|
382 |
+
x = layer(x, attention_mask=extended_attention_mask) # (B,L,D)
|
383 |
+
|
384 |
+
return x # (B,L,D)
|
385 |
+
|
386 |
+
|
387 |
+
class Embeddings(nn.Module):
|
388 |
+
def __init__(self, config):
|
389 |
+
super().__init__()
|
390 |
+
self.word_embeddings = nn.Embedding(
|
391 |
+
config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id
|
392 |
+
)
|
393 |
+
if config.position_embedding_type == "absolute":
|
394 |
+
self.position_embeddings = nn.Embedding(
|
395 |
+
config.max_sequence_length, config.embedding_size
|
396 |
+
)
|
397 |
+
self.token_type_embeddings = nn.Embedding(2, config.embedding_size)
|
398 |
+
self.norm = nn.LayerNorm(config.embedding_size)
|
399 |
+
self.dropout = nn.Dropout(config.dropout_prob)
|
400 |
+
|
401 |
+
def forward(
|
402 |
+
self,
|
403 |
+
input_ids, # <int>(B,L)
|
404 |
+
token_type_ids, # <int>(B,L), 0 / 1 corresponds to a segment A / B token
|
405 |
+
):
|
406 |
+
B, L = input_ids.shape
|
407 |
+
embeddings = self.word_embeddings(input_ids) # (B,L,E)
|
408 |
+
if hasattr(self, "position_embeddings"):
|
409 |
+
embeddings += self.position_embeddings.weight[None, :L, :]
|
410 |
+
embeddings += self.token_type_embeddings(token_type_ids)
|
411 |
+
embeddings = self.norm(embeddings) # (B,L,E)
|
412 |
+
embeddings = self.dropout(embeddings) # (B,L,E)
|
413 |
+
return embeddings # (B,L,E)
|
414 |
+
|
415 |
+
|
416 |
+
class EncoderLayer(nn.Module):
|
417 |
+
def __init__(self, config):
|
418 |
+
super().__init__()
|
419 |
+
self.self_attn_block = BlockWrapper(config, MultiHeadSelfAttention)
|
420 |
+
self.transition_block = BlockWrapper(config, FeedForwardNetwork)
|
421 |
+
|
422 |
+
def forward(
|
423 |
+
self,
|
424 |
+
x, # (B,L,D)
|
425 |
+
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
|
426 |
+
):
|
427 |
+
x = self.self_attn_block(x, attention_mask=attention_mask)
|
428 |
+
x = self.transition_block(x)
|
429 |
+
return x # (B,L,D)
|
430 |
+
|
431 |
+
|
432 |
+
class BlockWrapper(nn.Module):
|
433 |
+
def __init__(self, config, sublayer_cls):
|
434 |
+
super().__init__()
|
435 |
+
self.sublayer = sublayer_cls(config)
|
436 |
+
self.dropout = nn.Dropout(config.dropout_prob)
|
437 |
+
self.norm = nn.LayerNorm(config.hidden_size)
|
438 |
+
|
439 |
+
def forward(self, x, **kwargs):
|
440 |
+
original_x = x
|
441 |
+
x = self.sublayer(x, **kwargs)
|
442 |
+
x = self.dropout(x)
|
443 |
+
x = original_x + x
|
444 |
+
x = self.norm(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
|
448 |
+
class MultiHeadSelfAttention(nn.Module):
|
449 |
+
def __init__(self, config):
|
450 |
+
super().__init__()
|
451 |
+
self.mix_proj = nn.Linear(config.hidden_size, 3 * config.hidden_size)
|
452 |
+
self.attention = Attention(config)
|
453 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size)
|
454 |
+
self.H = config.num_attention_heads
|
455 |
+
self.d = config.hidden_size // self.H
|
456 |
+
|
457 |
+
def forward(
|
458 |
+
self,
|
459 |
+
x, # (B,L,D)
|
460 |
+
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
|
461 |
+
):
|
462 |
+
B, L, D, H, d = *x.shape, self.H, self.d
|
463 |
+
query, key, value = (
|
464 |
+
self.mix_proj(x).view(B, L, H, 3 * d).transpose(1, 2).split(d, dim=-1)
|
465 |
+
) # (B,H,L,d),(B,H,L,d),(B,H,L,d)
|
466 |
+
output = self.attention(query, key, value, attention_mask) # (B,H,L,d)
|
467 |
+
output = self.o_proj(output.transpose(1, 2).reshape(B, L, D)) # (B,L,D)
|
468 |
+
return output # (B,L,D)
|
469 |
+
|
470 |
+
|
471 |
+
class Attention(nn.Module):
|
472 |
+
def __init__(self, config):
|
473 |
+
super().__init__()
|
474 |
+
self.dropout = nn.Dropout(config.dropout_prob)
|
475 |
+
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
query, # (B,H,L,d)
|
479 |
+
key, # (B,H,L,d)
|
480 |
+
value, # (B,H,L,d)
|
481 |
+
attention_mask, # <int>(B,H,L,L), 0 / -1e4 for tokens that are not attended/ attended
|
482 |
+
):
|
483 |
+
B, H, L, d = key.shape
|
484 |
+
attention_score = query.matmul(key.transpose(-2, -1)) # (B,H,L,L)
|
485 |
+
attention_score = attention_score / math.sqrt(d) # (B,H,L,L)
|
486 |
+
attention_score += attention_mask # (B,H,L,L)
|
487 |
+
attention_probs = attention_score.softmax(dim=-1) # (B,H,L,L)
|
488 |
+
attention_probs = self.dropout(attention_probs) # (B,H,L,L)
|
489 |
+
output = attention_probs.matmul(value) # (B,H,L,d)
|
490 |
+
return output # (B,H,L,d)
|
491 |
+
|
492 |
+
|
493 |
+
class FeedForwardNetwork(nn.Module):
|
494 |
+
def __init__(self, config):
|
495 |
+
super().__init__()
|
496 |
+
self.linear1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
497 |
+
self.linear2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
498 |
+
|
499 |
+
def forward(self, x): # (B,L,D)
|
500 |
+
x = self.linear1(x) # (B L,intermediate_size)
|
501 |
+
x = F.gelu(x) # (B,L,intermediate_size)
|
502 |
+
x = self.linear2(x) # (B,L,D)
|
503 |
+
return x # (B,L,D)
|
504 |
+
|
505 |
+
|
506 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1868401491982e5ef2feb75d89045551b59931f5bfb89fca510bb50e50fd72ff
|
3 |
+
size 69713927
|