File size: 4,949 Bytes
1f5451b ab4a8b7 1f5451b d6d612b 1f5451b d6d612b 1f5451b f3cbc6a 1f5451b d6d612b 1f5451b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
datasets:
- Riksarkivet/trolldomskommissionen_seg
- Riksarkivet/svea_hovratt_seg
- Riksarkivet/krigshovrattens_dombocker_seg
- Riksarkivet/jonkopings_radhusratts_och_magistrat_seg
- Riksarkivet/gota_hovratt_seg
- Riksarkivet/frihetstidens_utskottshandlingar_seg
- Riksarkivet/bergskollegium_relationer_och_skrivelser_seg
- Riksarkivet/bergskollegium_advokatfiskalskontoret_seg
tags:
- instance segmentation
- handwritten
- htr
- text lines
library_name: htrflow
---
# Yolov9-lines-within-regions-handwritten
<!-- Provide a quick summary of what the model is/does. -->
A yolov9 instance segmentation model for segmenting text-lines within text-regions. To be used after text-regions segmentation as part of an HTR-pipeline
## Model Details
### Model Description
This model was developed for segmenting text-lines within text-regions in handwritten running-text documents. It wont work on full pages but only on cropped text-regions.
It is meant to be implemented in an HTR-pipeline where one first segment text-regions, then text-lines within the regions, and then feed these text-lines to an HTR-model.
- **Developed by:** The Swedish National Archives
- **Model type:** yolov9
- **License:** [More Information Needed]
### Model Sources
- **Repository:** [yolov9-lines_within_regions-1](https://huggingface.co/Riksarkivet/yolov9-lines-within-regions-1)
- **Paper:** [YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
## Uses
### Direct Use
Segment text-lines within text-regions as part of an HTR-pipeline for handwritten running-text documents
### Downstream Use
As part of an HTR-pipeline for transcribing entire pages of handwritten running-text documents. See [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow)
## How to Get Started with the Model
### How to Load and Use the YOLOv9 Instance Segmentation Model
Below is the Python code to load and use the trained YOLOv9 instance segmentation model using the Ultralytics repo:
```python
import torch
from ultralytics import YOLO
# Load the trained YOLOv9 model
model = YOLO('path/to/your/model.pt') # Update with the correct path to your trained model
# Load an image
img = 'path/to/your/image.jpg' # Update with the path to the image you want to use
# Perform instance segmentation
results = model(img)
# Display results
results.show() # Show image with predicted masks
# To get the raw predictions (bounding boxes, masks, etc.)
for result in results:
print(result.boxes) # Bounding boxes
print(result.masks) # Segmentation masks
```
### Usage with the HTRflow package
See the model card for [Swedish Lion Libre](https://huggingface.co/Riksarkivet/trocr-base-handwritten-hist-swe-2)
for example usage with the [HTRflow package](https://github.com/AI-Riksarkivet/htrflow), or refer to the documentation for
[HTRflow](https://github.com/AI-Riksarkivet/htrflow)
## Training Details
### Training Data
[Trolldomskommissionen](https://huggingface.co/datasets/Riksarkivet/trolldomskommissionen_seg)
[Svea Hovrätt](https://huggingface.co/datasets/Riksarkivet/svea_hovratt_seg)
[Krigshovrättens domböcker](https://huggingface.co/datasets/Riksarkivet/krigshovrattens_dombocker_seg)
[Jönköpings rådhusrätt och magistrat](https://huggingface.co/datasets/Riksarkivet/jonkopings_radhusratts_och_magistrat_seg)
[Göta hovrätt](https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg)
[Frihetstidens utskottshandlingar](https://huggingface.co/datasets/Riksarkivet/frihetstidens_utskottshandlingar_seg)
[Bergskollegium relationer och skrivelser](https://huggingface.co/datasets/Riksarkivet/bergskollegium_relationer_och_skrivelser_seg)
[Bergskollegium advokatfiskalkontoret](https://huggingface.co/datasets/Riksarkivet/bergskollegium_advokatfiskalskontoret_seg)
### Training Procedure
#### Training Hyperparameters
See [training config](https://huggingface.co/Riksarkivet/yolov9-lines-within-regions-1/blob/main/args.yaml) at model repo
## Evaluation
See [training results](https://huggingface.co/Riksarkivet/yolov9-lines-within-regions-1/blob/main/results.csv)
#### Metrics
Standard metrics for instance segmentation. Note that evaluation of segmentation as part of an HTR-pipeline should be measured by what effect it
has on the following HTR, that is, CER and WER for the entire page. For implementation and evaluation of entire HTR-pipelines, please check out [HTRflow](https://github.com/AI-Riksarkivet/htrflow),
the Swedish National Archive's open-source package for HTR and OCR projects.
### Model Architecture and Objective
yolov9
#### Software
[Ultralytics](https://github.com/ultralytics)
## Citation
[YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616) |