import torch import torch.nn as nn import torch.nn.functional as F import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return x class StochasticDepth(nn.Module): def __init__(self, p=0.8): super().__init__() self.p = p def forward(self, x, residual): if self.training: if torch.rand(1).item() < self.p: return x + residual else: return x else: return x + self.p * residual class AdvancedTransformerLayer(nn.Module): def __init__(self, d_model, nhead, dropout=0.1, stoch_depth_p=0.8): super().__init__() dim_feedforward = 4 * d_model self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.ff = nn.Sequential( nn.Linear(d_model, dim_feedforward), nn.ReLU(), nn.Linear(dim_feedforward, d_model) ) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) self.stoch_depth = StochasticDepth(stoch_depth_p) def forward(self, x, src_mask=None, src_key_padding_mask=None): # x shape: (seq_len, batch_size, d_model) norm_x = self.norm1(x) # Convert boolean mask to float mask if src_key_padding_mask is not None: src_key_padding_mask = src_key_padding_mask.float().masked_fill( src_key_padding_mask, float('-inf')).masked_fill(~src_key_padding_mask, float(0.0)) attn_output, _ = self.self_attn(norm_x, norm_x, norm_x, attn_mask=src_mask, key_padding_mask=src_key_padding_mask) x = self.stoch_depth(x, self.dropout(attn_output)) norm_x = self.norm2(x) ff_output = self.ff(norm_x) x = self.stoch_depth(x, self.dropout(ff_output)) return x class ChessTransformer(nn.Module): def __init__(self, num_layers=64, d_model=1024, nhead=8, dropout=0.1, stoch_depth_p=0.9, num_tokens=2066, pad_token_id=2064): super().__init__() self.embedding = nn.Embedding(num_tokens, d_model) self.pos_encoder = PositionalEncoding(d_model) self.layers = nn.ModuleList([ AdvancedTransformerLayer(d_model, nhead, dropout, stoch_depth_p) for _ in range(num_layers) ]) self.norm = nn.LayerNorm(d_model) self.output = nn.Linear(d_model, num_tokens) self.d_model = d_model self.padding_idx = pad_token_id def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def pad_sequences(self, sequences): padding_value = self.padding_idx max_len = max(len(seq) for seq in sequences) padded_seqs = [seq + [padding_value] * (max_len - len(seq)) for seq in sequences] return torch.LongTensor(padded_seqs) def forward(self, x): # x shape: (batch_size, seq_len) batch_size, seq_len = x.size() # Create padding mask padding_mask = (x == self.padding_idx) # Create causal mask causal_mask = self.generate_square_subsequent_mask(seq_len).to(x.device) # Embed and add positional encoding x = self.embedding(x).transpose(0, 1) * math.sqrt(self.d_model) x = self.pos_encoder(x) # Pass through each layer for layer in self.layers: x = layer(x, src_mask=causal_mask, src_key_padding_mask=padding_mask) x = self.norm(x) output = self.output(x.transpose(0, 1)) return output def winning_moves_loss(output, ground_truth, win_labels, pad_token_id=2064, start_token_id=2065): """ Compute the loss only for the winning moves of white and black. """ output = output.cuda() ground_truth = ground_truth.cuda() win_labels = win_labels.cuda() batch_size, seq_len, num_tokens = output.shape # Shift the ground truth to align with the output predictions ground_truth_shifted = ground_truth[:, 1:].contiguous() output_shifted = output[:, :-1, :].contiguous() # Flatten the output and ground truth for easier masking output_flat = output_shifted.view(-1, num_tokens) ground_truth_flat = ground_truth_shifted.view(-1) # Apply log softmax to the flattened output output_log_softmax = F.log_softmax(output_flat, dim=-1) # Repeat win_labels for each move in the sequence win_labels_expanded = win_labels.unsqueeze(1).repeat(1, seq_len - 1).view(-1) # Create a mask for the winning moves move_indices = torch.arange(seq_len - 1, device=output.device).unsqueeze(0).repeat(batch_size, 1).view(-1) white_win_mask = (win_labels_expanded == 1) & (move_indices % 2 == 0) black_win_mask = (win_labels_expanded == 0) & (move_indices % 2 == 1) # Combine the masks selected_moves_mask = (white_win_mask | black_win_mask) & (ground_truth_flat != pad_token_id) & (ground_truth_flat != start_token_id) # Calculate the negative log-likelihood loss only for the selected moves loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none') loss = loss * selected_moves_mask.float() # Average the loss over the selected moves selected_moves_count = selected_moves_mask.float().sum() if selected_moves_count > 0: loss = loss.sum() / selected_moves_count else: loss = loss.sum() # If no moves are selected, return 0 loss return loss def all_moves_loss(output, ground_truth, pad_token_id=2064, start_token_id=2065): """ Compute the loss for all valid moves in the sequence, excluding start and padding tokens. """ batch_size, seq_len, num_tokens = output.shape output = output.cuda() ground_truth = ground_truth.cuda() # Shift the output and ground truth to align them output_shifted = output[:, :-1, :].contiguous() ground_truth_shifted = ground_truth[:, 1:].contiguous() # Flatten the shifted output and ground truth output_flat = output_shifted.view(-1, num_tokens) ground_truth_flat = ground_truth_shifted.view(-1) # Apply log softmax to the flattened output output_log_softmax = F.log_softmax(output_flat, dim=-1) # Create a mask for all valid moves (excluding padding and start tokens) valid_moves_mask = ((ground_truth_flat != pad_token_id) & (ground_truth_flat != start_token_id)) # Calculate the negative log-likelihood loss for all moves loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none') # Apply the mask to exclude padding and start tokens loss = loss * valid_moves_mask.float() # Average the loss over all valid moves valid_moves_count = valid_moves_mask.float().sum() if valid_moves_count > 0: loss = loss.sum() / valid_moves_count else: loss = loss.sum() # If no valid moves, return 0 loss return loss def weighted_chess_loss(output, ground_truth, win_labels, winning_weight=1.0, losing_weight=0.1, pad_token_id=2064, start_token_id=2065): """ Compute a weighted loss for all moves, with higher weight for winning moves. """ output = output.cuda() ground_truth = ground_truth.cuda() win_labels = win_labels.cuda() batch_size, seq_len, num_tokens = output.shape # Shift the ground truth to align with the output predictions ground_truth_shifted = ground_truth[:, 1:].contiguous() output_shifted = output[:, :-1, :].contiguous() # Flatten the output and ground truth for easier masking output_flat = output_shifted.view(-1, num_tokens) ground_truth_flat = ground_truth_shifted.view(-1) # Apply log softmax to the flattened output output_log_softmax = F.log_softmax(output_flat, dim=-1) # Repeat win_labels for each move in the sequence win_labels_expanded = win_labels.unsqueeze(1).repeat(1, seq_len - 1).view(-1) # Create masks for winning and losing moves move_indices = torch.arange(seq_len - 1, device=output.device).unsqueeze(0).repeat(batch_size, 1).view(-1) white_win_mask = (win_labels_expanded == 1) & (move_indices % 2 == 0) black_win_mask = (win_labels_expanded == 0) & (move_indices % 2 == 1) winning_moves_mask = white_win_mask | black_win_mask # Create a mask for all valid moves (excluding padding and start tokens) valid_moves_mask = (ground_truth_flat != pad_token_id) & (ground_truth_flat != start_token_id) # Calculate the negative log-likelihood loss for all valid moves loss = F.nll_loss(output_log_softmax, ground_truth_flat, reduction='none') # Apply weights based on whether the move is winning or losing weights = torch.where(winning_moves_mask & valid_moves_mask, winning_weight, losing_weight) # Apply the weights and the valid moves mask to the loss weighted_loss = loss * weights * valid_moves_mask.float() # Average the loss over all valid moves valid_moves_count = valid_moves_mask.float().sum() if valid_moves_count > 0: avg_loss = weighted_loss.sum() / valid_moves_count else: avg_loss = weighted_loss.sum() # If no valid moves, return 0 loss return avg_loss