--- license: apache-2.0 library_name: peft base_model: openlm-research/open_llama_7b --- # minihf_evaluator_openllama_7b `minihf_evaluator_openllama_7b` is a LoRA instruct fine-tune of [OpenLLaMA 7B](https://huggingface.co/openlm-research/open_llama_7b). The sequence `<|end|>` was used to separate the prompt and response. The correct way to prompt the model is: `Does 2 + 2 = 4?<|end|>`. The tokenizer will prepend a BOS token (``) by default. The response will end with an EOS token (``). ## Training procedure `minihf_evaluator_openllama_7b` was fine-tuned for 100,000 examples on 90% [Muennighoff/flan](https://huggingface.co/datasets/Muennighoff/flan) / 10% [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) using batch size 4 per GPU on 8 40GB A100 GPUs. Examples where the prompt and response would not fit into 2,048 tokens were dropped. The fine-tuning was done using the following command: ```bash accelerate launch make_evaluator.py --output-dir minihf_evaluator_openllama_7b ``` The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0