--- license: apache-2.0 tags: - generated_from_trainer datasets: - inspec metrics: - f1 model-index: - name: bert-finetuned-inspec results: - task: name: Token Classification type: token-classification dataset: name: inspec type: inspec args: extraction metrics: - name: F1 type: f1 value: 0.30353331752430635 --- # bert-finetuned-inspec This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the inspec dataset. It achieves the following results on the evaluation set: - Loss: 0.3055 - F1: 0.3035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3323 | 1.0 | 125 | 0.2799 | 0.1521 | | 0.2563 | 2.0 | 250 | 0.2638 | 0.2230 | | 0.2179 | 3.0 | 375 | 0.2689 | 0.2607 | | 0.1809 | 4.0 | 500 | 0.2807 | 0.3122 | | 0.1545 | 5.0 | 625 | 0.3055 | 0.3035 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1