Rodrigo1771 commited on
Commit
5de0a0f
1 Parent(s): 9160d10

Model save

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
2
  license: apache-2.0
3
- base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
4
  tags:
5
- - token-classification
6
  - generated_from_trainer
7
  datasets:
8
- - Rodrigo1771/drugtemist-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,24 +17,24 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: Rodrigo1771/drugtemist-ner
22
- type: Rodrigo1771/drugtemist-ner
23
- config: DrugTEMIST NER
24
  split: validation
25
- args: DrugTEMIST NER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9394760614272809
30
  - name: Recall
31
  type: recall
32
- value: 0.9558823529411765
33
  - name: F1
34
  type: f1
35
- value: 0.9476082004555808
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9989632965795653
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/drugtemist-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0055
49
- - Precision: 0.9395
50
- - Recall: 0.9559
51
- - F1: 0.9476
52
- - Accuracy: 0.9990
53
 
54
  ## Model description
55
 
@@ -80,18 +79,18 @@ The following hyperparameters were used during training:
80
 
81
  ### Training results
82
 
83
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
84
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
85
- | No log | 0.9988 | 425 | 0.0050 | 0.9251 | 0.8971 | 0.9109 | 0.9982 |
86
- | 0.0196 | 2.0 | 851 | 0.0038 | 0.9400 | 0.9219 | 0.9309 | 0.9988 |
87
- | 0.0031 | 2.9988 | 1276 | 0.0035 | 0.9335 | 0.9292 | 0.9314 | 0.9988 |
88
- | 0.0017 | 4.0 | 1702 | 0.0041 | 0.9119 | 0.9605 | 0.9355 | 0.9988 |
89
- | 0.0009 | 4.9988 | 2127 | 0.0047 | 0.9393 | 0.9522 | 0.9457 | 0.9989 |
90
- | 0.0004 | 6.0 | 2553 | 0.0055 | 0.9413 | 0.9430 | 0.9421 | 0.9989 |
91
- | 0.0004 | 6.9988 | 2978 | 0.0054 | 0.9320 | 0.9577 | 0.9447 | 0.9989 |
92
- | 0.0003 | 8.0 | 3404 | 0.0053 | 0.9346 | 0.9596 | 0.9469 | 0.9989 |
93
- | 0.0002 | 8.9988 | 3829 | 0.0057 | 0.9385 | 0.9531 | 0.9457 | 0.9989 |
94
- | 0.0001 | 9.9882 | 4250 | 0.0055 | 0.9395 | 0.9559 | 0.9476 | 0.9990 |
95
 
96
 
97
  ### Framework versions
 
1
  ---
2
  license: apache-2.0
3
+ base_model: michiyasunaga/BioLinkBERT-base
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
+ - drugtemist-en-ner
8
  metrics:
9
  - precision
10
  - recall
 
17
  name: Token Classification
18
  type: token-classification
19
  dataset:
20
+ name: drugtemist-en-ner
21
+ type: drugtemist-en-ner
22
+ config: DrugTEMIST English NER
23
  split: validation
24
+ args: DrugTEMIST English NER
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9191919191919192
29
  - name: Recall
30
  type: recall
31
+ value: 0.9328984156570364
32
  - name: F1
33
  type: f1
34
+ value: 0.9259944495837187
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.998618591800854
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # output
44
 
45
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0073
48
+ - Precision: 0.9192
49
+ - Recall: 0.9329
50
+ - F1: 0.9260
51
+ - Accuracy: 0.9986
52
 
53
  ## Model description
54
 
 
79
 
80
  ### Training results
81
 
82
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | No log | 1.0 | 434 | 0.0057 | 0.8938 | 0.8938 | 0.8938 | 0.9981 |
85
+ | 0.0182 | 2.0 | 868 | 0.0044 | 0.9024 | 0.9301 | 0.9160 | 0.9985 |
86
+ | 0.0039 | 3.0 | 1302 | 0.0045 | 0.9129 | 0.9282 | 0.9205 | 0.9987 |
87
+ | 0.0024 | 4.0 | 1736 | 0.0051 | 0.8821 | 0.9348 | 0.9077 | 0.9983 |
88
+ | 0.0017 | 5.0 | 2170 | 0.0057 | 0.9251 | 0.9320 | 0.9285 | 0.9986 |
89
+ | 0.0012 | 6.0 | 2604 | 0.0061 | 0.9001 | 0.9236 | 0.9117 | 0.9984 |
90
+ | 0.0009 | 7.0 | 3038 | 0.0056 | 0.9327 | 0.9301 | 0.9314 | 0.9987 |
91
+ | 0.0009 | 8.0 | 3472 | 0.0068 | 0.9118 | 0.9348 | 0.9231 | 0.9986 |
92
+ | 0.0006 | 9.0 | 3906 | 0.0072 | 0.9267 | 0.9310 | 0.9289 | 0.9987 |
93
+ | 0.0004 | 10.0 | 4340 | 0.0073 | 0.9192 | 0.9329 | 0.9260 | 0.9986 |
94
 
95
 
96
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b02e45065034d02bb35c7b02710b67509869c41e34709f5df8ac78e1a7afca87
3
  size 430601004
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcbb089b16f14979e74b0e93151976bfcd368b7543d817d109a468397e8fadf3
3
  size 430601004
tb/events.out.tfevents.1725053057.6b97e535edda.35455.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dacc5f14849d9eb6e517fa55f5251f62fc9dccfc3b74ea096b6d6c2e1bbba7cf
3
- size 10987
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:060b7fdb33d177fa8187153a2ec8df8664c9f3e11c25faef21bd32c1122357bf
3
+ size 11813
train.log CHANGED
@@ -1273,3 +1273,24 @@ You should probably TRAIN this model on a down-stream task to be able to use it
1273
  [INFO|modeling_utils.py:2690] 2024-08-30 21:41:35,219 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-4340/model.safetensors
1274
  [INFO|tokenization_utils_base.py:2574] 2024-08-30 21:41:35,220 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-4340/tokenizer_config.json
1275
  [INFO|tokenization_utils_base.py:2583] 2024-08-30 21:41:35,221 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-4340/special_tokens_map.json
 
 
 
 
 
 
 
1276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273
  [INFO|modeling_utils.py:2690] 2024-08-30 21:41:35,219 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-4340/model.safetensors
1274
  [INFO|tokenization_utils_base.py:2574] 2024-08-30 21:41:35,220 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-4340/tokenizer_config.json
1275
  [INFO|tokenization_utils_base.py:2583] 2024-08-30 21:41:35,221 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-4340/special_tokens_map.json
1276
+ [INFO|trainer.py:2383] 2024-08-30 21:41:36,725 >>
1277
+
1278
+ Training completed. Do not forget to share your model on huggingface.co/models =)
1279
+
1280
+
1281
+ [INFO|trainer.py:2621] 2024-08-30 21:41:36,725 >> Loading best model from /content/dissertation/scripts/ner/output/checkpoint-3038 (score: 0.9314045730284647).
1282
+
1283
 
1284
+ [INFO|trainer.py:4239] 2024-08-30 21:41:36,893 >> Waiting for the current checkpoint push to be finished, this might take a couple of minutes.
1285
+ [INFO|trainer.py:3478] 2024-08-30 21:41:37,582 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1286
+ [INFO|configuration_utils.py:472] 2024-08-30 21:41:37,583 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1287
+ [INFO|modeling_utils.py:2690] 2024-08-30 21:41:38,705 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1288
+ [INFO|tokenization_utils_base.py:2574] 2024-08-30 21:41:38,706 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1289
+ [INFO|tokenization_utils_base.py:2583] 2024-08-30 21:41:38,706 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1290
+ [INFO|trainer.py:3478] 2024-08-30 21:41:38,719 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1291
+ [INFO|configuration_utils.py:472] 2024-08-30 21:41:38,721 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1292
+ [INFO|modeling_utils.py:2690] 2024-08-30 21:41:39,977 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1293
+ [INFO|tokenization_utils_base.py:2574] 2024-08-30 21:41:39,979 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1294
+ [INFO|tokenization_utils_base.py:2583] 2024-08-30 21:41:39,979 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1295
+ {'eval_loss': 0.007294897455722094, 'eval_precision': 0.9191919191919192, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9259944495837187, 'eval_accuracy': 0.998618591800854, 'eval_runtime': 13.8041, 'eval_samples_per_second': 503.184, 'eval_steps_per_second': 62.952, 'epoch': 10.0}
1296
+ {'train_runtime': 1039.0596, 'train_samples_per_second': 267.242, 'train_steps_per_second': 4.177, 'train_loss': 0.003382195293697344, 'epoch': 10.0}
1297
+