File size: 55,485 Bytes
65314ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
2024-08-30 20:25:26.549777: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-08-30 20:25:26.568217: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-08-30 20:25:26.590253: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-08-30 20:25:26.597224: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2024-08-30 20:25:26.612962: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
2024-08-30 20:25:27.916342: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1494: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of πŸ€— Transformers. Use `eval_strategy` instead
  warnings.warn(
08/30/2024 20:25:29 - WARNING - __main__ -   Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
08/30/2024 20:25:29 - INFO - __main__ -   Training/evaluation parameters TrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
batch_eval_metrics=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_do_concat_batches=True,
eval_on_start=False,
eval_steps=None,
eval_strategy=epoch,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=2,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=True,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=True,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=/content/dissertation/scripts/ner/output/tb,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=f1,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
optim_target_modules=None,
output_dir=/content/dissertation/scripts/ner/output,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=8,
per_device_train_batch_size=32,
prediction_loss_only=False,
push_to_hub=True,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=['tensorboard'],
restore_callback_states_from_checkpoint=False,
resume_from_checkpoint=None,
run_name=/content/dissertation/scripts/ner/output,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=epoch,
save_total_limit=None,
seed=42,
skip_memory_metrics=True,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)

Downloading builder script:   0%|          | 0.00/3.54k [00:00<?, ?B/s]
Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3.54k/3.54k [00:00<00:00, 38.9kB/s]

Downloading data:   0%|          | 0.00/27.6M [00:00<?, ?B/s]
Downloading data:  38%|β–ˆβ–ˆβ–ˆβ–Š      | 10.5M/27.6M [00:00<00:00, 17.2MB/s]
Downloading data:  76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 21.0M/27.6M [00:00<00:00, 28.2MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 27.6M/27.6M [00:00<00:00, 30.4MB/s]

Downloading data:   0%|          | 0.00/6.96M [00:00<?, ?B/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.96M/6.96M [00:00<00:00, 9.97MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.96M/6.96M [00:00<00:00, 9.90MB/s]

Downloading data:   0%|          | 0.00/12.3M [00:00<?, ?B/s]
Downloading data:  85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 10.5M/12.3M [00:00<00:00, 14.4MB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 12.3M/12.3M [00:00<00:00, 15.7MB/s]

Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 680 examples [00:00, 6770.03 examples/s]
Generating train split: 1700 examples [00:00, 6444.09 examples/s]
Generating train split: 2366 examples [00:00, 6429.84 examples/s]
Generating train split: 3354 examples [00:00, 6497.31 examples/s]
Generating train split: 4366 examples [00:00, 6591.28 examples/s]
Generating train split: 5026 examples [00:00, 6590.04 examples/s]
Generating train split: 5752 examples [00:00, 6774.12 examples/s]
Generating train split: 6734 examples [00:01, 6683.22 examples/s]
Generating train split: 7743 examples [00:01, 6692.84 examples/s]
Generating train split: 8733 examples [00:01, 6654.49 examples/s]
Generating train split: 9716 examples [00:01, 6618.43 examples/s]
Generating train split: 10731 examples [00:01, 6660.28 examples/s]
Generating train split: 11751 examples [00:01, 6698.38 examples/s]
Generating train split: 12779 examples [00:01, 6743.63 examples/s]
Generating train split: 13741 examples [00:02, 6639.47 examples/s]
Generating train split: 14750 examples [00:02, 6661.83 examples/s]
Generating train split: 15753 examples [00:02, 6667.19 examples/s]
Generating train split: 16770 examples [00:02, 6696.94 examples/s]
Generating train split: 17747 examples [00:02, 6632.86 examples/s]
Generating train split: 18718 examples [00:02, 6581.28 examples/s]
Generating train split: 19734 examples [00:02, 6632.61 examples/s]
Generating train split: 20717 examples [00:03, 6602.84 examples/s]
Generating train split: 21721 examples [00:03, 6627.21 examples/s]
Generating train split: 22396 examples [00:03, 6650.95 examples/s]
Generating train split: 23379 examples [00:03, 6615.02 examples/s]
Generating train split: 24364 examples [00:03, 6593.55 examples/s]
Generating train split: 25347 examples [00:03, 6543.21 examples/s]
Generating train split: 26334 examples [00:03, 6535.03 examples/s]
Generating train split: 27000 examples [00:04, 6443.51 examples/s]
Generating train split: 27229 examples [00:04, 6605.43 examples/s]

Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 707 examples [00:00, 7037.34 examples/s]
Generating validation split: 1683 examples [00:00, 6583.30 examples/s]
Generating validation split: 2366 examples [00:00, 6499.90 examples/s]
Generating validation split: 3358 examples [00:00, 6523.55 examples/s]
Generating validation split: 4347 examples [00:00, 6486.94 examples/s]
Generating validation split: 5000 examples [00:00, 6445.93 examples/s]
Generating validation split: 5723 examples [00:00, 6658.31 examples/s]
Generating validation split: 6737 examples [00:01, 6690.91 examples/s]
Generating validation split: 6810 examples [00:01, 6559.78 examples/s]

Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 781 examples [00:00, 7779.50 examples/s]
Generating test split: 1895 examples [00:00, 7535.97 examples/s]
Generating test split: 3000 examples [00:00, 7402.47 examples/s]
Generating test split: 3773 examples [00:00, 7504.86 examples/s]
Generating test split: 4877 examples [00:00, 7443.50 examples/s]
Generating test split: 5656 examples [00:00, 7538.62 examples/s]
Generating test split: 6467 examples [00:00, 7699.53 examples/s]
Generating test split: 7244 examples [00:00, 7715.50 examples/s]
Generating test split: 8436 examples [00:01, 7798.01 examples/s]
Generating test split: 9636 examples [00:01, 7864.66 examples/s]
Generating test split: 10476 examples [00:01, 7824.56 examples/s]
Generating test split: 11677 examples [00:01, 7882.93 examples/s]
Generating test split: 12646 examples [00:01, 5028.97 examples/s]
Generating test split: 13401 examples [00:01, 5421.91 examples/s]
Generating test split: 14168 examples [00:02, 5869.47 examples/s]
Generating test split: 14614 examples [00:02, 6796.13 examples/s]
[INFO|configuration_utils.py:733] 2024-08-30 20:25:41,919 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-08-30 20:25:41,923 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "finetuning_task": "ner",
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "id2label": {
    "0": "O",
    "1": "B-ENFERMEDAD",
    "2": "I-ENFERMEDAD"
  },
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "label2id": {
    "B-ENFERMEDAD": 1,
    "I-ENFERMEDAD": 2,
    "O": 0
  },
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.42.4",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,016 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,017 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.42.4",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,027 >> loading file vocab.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/vocab.json
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file merges.txt from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/merges.txt
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file tokenizer.json from cache at None
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file added_tokens.json from cache at None
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file special_tokens_map.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/special_tokens_map.json
[INFO|tokenization_utils_base.py:2161] 2024-08-30 20:25:42,028 >> loading file tokenizer_config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/tokenizer_config.json
[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,028 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,029 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.42.4",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|configuration_utils.py:733] 2024-08-30 20:25:42,112 >> loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/config.json
[INFO|configuration_utils.py:800] 2024-08-30 20:25:42,113 >> Model config RobertaConfig {
  "_name_or_path": "PlanTL-GOB-ES/bsc-bio-ehr-es",
  "architectures": [
    "RobertaForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "bos_token_id": 0,
  "classifier_dropout": null,
  "eos_token_id": 2,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-05,
  "max_position_embeddings": 514,
  "model_type": "roberta",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 1,
  "position_embedding_type": "absolute",
  "transformers_version": "4.42.4",
  "type_vocab_size": 1,
  "use_cache": true,
  "vocab_size": 50262
}

[INFO|modeling_utils.py:3556] 2024-08-30 20:25:42,300 >> loading weights file pytorch_model.bin from cache at /root/.cache/huggingface/hub/models--PlanTL-GOB-ES--bsc-bio-ehr-es/snapshots/1e543adb2d21f19d85a89305eebdbd64ab656b99/pytorch_model.bin
[INFO|modeling_utils.py:4354] 2024-08-30 20:25:42,438 >> Some weights of the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es were not used when initializing RobertaForTokenClassification: ['lm_head.bias', 'lm_head.decoder.bias', 'lm_head.decoder.weight', 'lm_head.dense.bias', 'lm_head.dense.weight', 'lm_head.layer_norm.bias', 'lm_head.layer_norm.weight']
- This IS expected if you are initializing RobertaForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing RobertaForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
[WARNING|modeling_utils.py:4366] 2024-08-30 20:25:42,438 >> Some weights of RobertaForTokenClassification were not initialized from the model checkpoint at PlanTL-GOB-ES/bsc-bio-ehr-es and are newly initialized: ['classifier.bias', 'classifier.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

Map:   0%|          | 0/27229 [00:00<?, ? examples/s]
Map:   7%|β–‹         | 2000/27229 [00:00<00:02, 10564.72 examples/s]
Map:  15%|β–ˆβ–        | 4000/27229 [00:00<00:02, 10953.22 examples/s]
Map:  22%|β–ˆβ–ˆβ–       | 6000/27229 [00:00<00:01, 11153.09 examples/s]
Map:  29%|β–ˆβ–ˆβ–‰       | 8000/27229 [00:00<00:01, 11313.41 examples/s]
Map:  37%|β–ˆβ–ˆβ–ˆβ–‹      | 10000/27229 [00:00<00:01, 11222.22 examples/s]
Map:  44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 12000/27229 [00:01<00:01, 11320.82 examples/s]
Map:  51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 14000/27229 [00:01<00:01, 11244.86 examples/s]
Map:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 16000/27229 [00:01<00:00, 11231.80 examples/s]
Map:  66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 18000/27229 [00:01<00:00, 11231.70 examples/s]
Map:  73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 20000/27229 [00:01<00:00, 11355.32 examples/s]
Map:  81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 22000/27229 [00:01<00:00, 11344.14 examples/s]
Map:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 24000/27229 [00:02<00:00, 11393.55 examples/s]
Map:  95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 26000/27229 [00:02<00:00, 11349.27 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 27229/27229 [00:02<00:00, 10948.22 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 27229/27229 [00:02<00:00, 11170.55 examples/s]

Map:   0%|          | 0/6810 [00:00<?, ? examples/s]
Map:  29%|β–ˆβ–ˆβ–‰       | 2000/6810 [00:00<00:00, 11001.37 examples/s]
Map:  59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 4000/6810 [00:00<00:00, 11030.44 examples/s]
Map:  88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 6000/6810 [00:00<00:00, 11133.09 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6810/6810 [00:00<00:00, 11043.95 examples/s]

Map:   0%|          | 0/14614 [00:00<?, ? examples/s]
Map:  14%|β–ˆβ–Ž        | 2000/14614 [00:00<00:00, 12902.53 examples/s]
Map:  27%|β–ˆβ–ˆβ–‹       | 4000/14614 [00:00<00:01, 6743.67 examples/s] 
Map:  41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 6000/14614 [00:00<00:00, 8771.21 examples/s]
Map:  55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 8000/14614 [00:00<00:00, 8837.23 examples/s]
Map:  68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 10000/14614 [00:01<00:00, 10043.88 examples/s]
Map:  82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 12000/14614 [00:01<00:00, 10956.27 examples/s]
Map:  96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 14000/14614 [00:01<00:00, 11520.66 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 14614/14614 [00:01<00:00, 10168.24 examples/s]
/content/dissertation/scripts/ner/run_ner_train.py:397: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library πŸ€— Evaluate: https://huggingface.co/docs/evaluate
  metric = load_metric("seqeval", trust_remote_code=True)
[INFO|trainer.py:805] 2024-08-30 20:25:48,288 >> The following columns in the training set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:2128] 2024-08-30 20:25:48,850 >> ***** Running training *****
[INFO|trainer.py:2129] 2024-08-30 20:25:48,850 >>   Num examples = 27,229
[INFO|trainer.py:2130] 2024-08-30 20:25:48,850 >>   Num Epochs = 10
[INFO|trainer.py:2131] 2024-08-30 20:25:48,850 >>   Instantaneous batch size per device = 32
[INFO|trainer.py:2134] 2024-08-30 20:25:48,850 >>   Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:2135] 2024-08-30 20:25:48,851 >>   Gradient Accumulation steps = 2
[INFO|trainer.py:2136] 2024-08-30 20:25:48,851 >>   Total optimization steps = 4,250
[INFO|trainer.py:2137] 2024-08-30 20:25:48,851 >>   Number of trainable parameters = 124,055,043

  0%|          | 0/4250 [00:00<?, ?it/s]
  0%|          | 1/4250 [00:01<1:18:15,  1.11s/it]
  0%|          | 2/4250 [00:01<40:12,  1.76it/s]  
  0%|          | 3/4250 [00:01<28:24,  2.49it/s]
  0%|          | 4/4250 [00:01<22:38,  3.13it/s]
  0%|          | 5/4250 [00:01<20:43,  3.41it/s]
  0%|          | 6/4250 [00:02<18:37,  3.80it/s]
  0%|          | 7/4250 [00:02<17:55,  3.94it/s]
  0%|          | 8/4250 [00:02<16:59,  4.16it/s]
  0%|          | 9/4250 [00:02<17:55,  3.94it/s]
  0%|          | 10/4250 [00:03<17:19,  4.08it/s]
  0%|          | 11/4250 [00:03<16:45,  4.21it/s]
  0%|          | 12/4250 [00:03<15:21,  4.60it/s]
  0%|          | 13/4250 [00:03<17:23,  4.06it/s]
  0%|          | 14/4250 [00:04<16:58,  4.16it/s]
  0%|          | 15/4250 [00:04<16:38,  4.24it/s]
  0%|          | 16/4250 [00:04<15:46,  4.47it/s]
  0%|          | 17/4250 [00:04<14:44,  4.78it/s]
  0%|          | 18/4250 [00:04<14:27,  4.88it/s]
  0%|          | 19/4250 [00:05<15:16,  4.62it/s]
  0%|          | 20/4250 [00:05<14:22,  4.90it/s]
  0%|          | 21/4250 [00:05<16:37,  4.24it/s]
  1%|          | 22/4250 [00:05<15:57,  4.42it/s]
  1%|          | 23/4250 [00:05<15:28,  4.55it/s]
  1%|          | 24/4250 [00:06<15:18,  4.60it/s]
  1%|          | 25/4250 [00:06<16:46,  4.20it/s]
  1%|          | 26/4250 [00:06<15:14,  4.62it/s]
  1%|          | 27/4250 [00:06<15:15,  4.61it/s]
  1%|          | 28/4250 [00:07<14:02,  5.01it/s]
  1%|          | 29/4250 [00:07<13:43,  5.12it/s]
  1%|          | 30/4250 [00:07<16:48,  4.18it/s]
  1%|          | 31/4250 [00:07<15:45,  4.46it/s]
  1%|          | 32/4250 [00:07<16:53,  4.16it/s]
  1%|          | 33/4250 [00:08<16:20,  4.30it/s]
  1%|          | 34/4250 [00:08<16:34,  4.24it/s]
  1%|          | 35/4250 [00:08<15:53,  4.42it/s]
  1%|          | 36/4250 [00:08<16:15,  4.32it/s]
  1%|          | 37/4250 [00:09<15:17,  4.59it/s]
  1%|          | 38/4250 [00:09<15:07,  4.64it/s]
  1%|          | 39/4250 [00:09<16:28,  4.26it/s]
  1%|          | 40/4250 [00:09<15:19,  4.58it/s]
  1%|          | 41/4250 [00:09<14:59,  4.68it/s]
  1%|          | 42/4250 [00:10<15:06,  4.64it/s]
  1%|          | 43/4250 [00:10<17:34,  3.99it/s]
  1%|          | 44/4250 [00:11<27:51,  2.52it/s]
  1%|          | 45/4250 [00:11<23:41,  2.96it/s]
  1%|          | 46/4250 [00:11<22:36,  3.10it/s]
  1%|          | 47/4250 [00:11<19:58,  3.51it/s]
  1%|          | 48/4250 [00:12<18:45,  3.73it/s]
  1%|          | 49/4250 [00:12<16:12,  4.32it/s]
  1%|          | 50/4250 [00:12<16:45,  4.18it/s]
  1%|          | 51/4250 [00:12<16:59,  4.12it/s]
  1%|          | 52/4250 [00:13<16:34,  4.22it/s]
  1%|          | 53/4250 [00:13<17:18,  4.04it/s]
  1%|▏         | 54/4250 [00:13<20:58,  3.33it/s]
  1%|▏         | 55/4250 [00:13<19:06,  3.66it/s]
  1%|▏         | 56/4250 [00:14<18:27,  3.79it/s]
  1%|▏         | 57/4250 [00:14<17:06,  4.08it/s]
  1%|▏         | 58/4250 [00:14<15:39,  4.46it/s]
  1%|▏         | 59/4250 [00:14<15:05,  4.63it/s]
  1%|▏         | 60/4250 [00:14<14:49,  4.71it/s]
  1%|▏         | 61/4250 [00:15<15:52,  4.40it/s]
  1%|▏         | 62/4250 [00:15<15:58,  4.37it/s]
  1%|▏         | 63/4250 [00:15<15:02,  4.64it/s]
  2%|▏         | 64/4250 [00:15<14:48,  4.71it/s]
  2%|▏         | 65/4250 [00:16<15:34,  4.48it/s]
  2%|▏         | 66/4250 [00:16<16:39,  4.19it/s]
  2%|▏         | 67/4250 [00:16<16:33,  4.21it/s]
  2%|▏         | 68/4250 [00:17<20:48,  3.35it/s]
  2%|▏         | 69/4250 [00:17<18:35,  3.75it/s]
  2%|▏         | 70/4250 [00:17<19:57,  3.49it/s]
  2%|▏         | 71/4250 [00:17<18:59,  3.67it/s]
  2%|▏         | 72/4250 [00:18<17:43,  3.93it/s]
  2%|▏         | 73/4250 [00:18<17:16,  4.03it/s]
  2%|▏         | 74/4250 [00:18<17:31,  3.97it/s]
  2%|▏         | 75/4250 [00:18<15:35,  4.46it/s]
  2%|▏         | 76/4250 [00:18<16:09,  4.30it/s]
  2%|▏         | 77/4250 [00:19<15:16,  4.55it/s]
  2%|▏         | 78/4250 [00:19<14:19,  4.85it/s]
  2%|▏         | 79/4250 [00:19<14:56,  4.65it/s]
  2%|▏         | 80/4250 [00:19<15:15,  4.56it/s]
  2%|▏         | 81/4250 [00:19<15:31,  4.47it/s]
  2%|▏         | 82/4250 [00:20<14:46,  4.70it/s]
  2%|▏         | 83/4250 [00:20<16:51,  4.12it/s]
  2%|▏         | 84/4250 [00:20<15:25,  4.50it/s]
  2%|▏         | 85/4250 [00:20<15:09,  4.58it/s]
  2%|▏         | 86/4250 [00:21<15:01,  4.62it/s]
  2%|▏         | 87/4250 [00:21<15:03,  4.61it/s]
  2%|▏         | 88/4250 [00:21<13:40,  5.07it/s]
  2%|▏         | 89/4250 [00:21<13:52,  5.00it/s]
  2%|▏         | 90/4250 [00:21<16:14,  4.27it/s]
  2%|▏         | 91/4250 [00:22<14:35,  4.75it/s]
  2%|▏         | 92/4250 [00:22<14:04,  4.93it/s]
  2%|▏         | 93/4250 [00:22<13:20,  5.19it/s]
  2%|▏         | 94/4250 [00:22<13:59,  4.95it/s]
  2%|▏         | 95/4250 [00:22<15:09,  4.57it/s]
  2%|▏         | 96/4250 [00:23<16:58,  4.08it/s]
  2%|▏         | 97/4250 [00:23<15:55,  4.34it/s]
  2%|▏         | 98/4250 [00:23<14:47,  4.68it/s]
  2%|▏         | 99/4250 [00:23<14:10,  4.88it/s]
  2%|▏         | 100/4250 [00:24<14:30,  4.77it/s]
  2%|▏         | 101/4250 [00:24<18:02,  3.83it/s]
  2%|▏         | 102/4250 [00:24<20:27,  3.38it/s]
  2%|▏         | 103/4250 [00:25<18:31,  3.73it/s]
  2%|▏         | 104/4250 [00:25<17:01,  4.06it/s]
  2%|▏         | 105/4250 [00:25<16:41,  4.14it/s]
  2%|▏         | 106/4250 [00:25<16:12,  4.26it/s]
  3%|β–Ž         | 107/4250 [00:25<15:58,  4.32it/s]
  3%|β–Ž         | 108/4250 [00:26<19:11,  3.60it/s]
  3%|β–Ž         | 109/4250 [00:26<18:38,  3.70it/s]
  3%|β–Ž         | 110/4250 [00:26<17:15,  4.00it/s]
  3%|β–Ž         | 111/4250 [00:26<15:36,  4.42it/s]
  3%|β–Ž         | 112/4250 [00:27<16:11,  4.26it/s]
  3%|β–Ž         | 113/4250 [00:27<15:49,  4.36it/s]
  3%|β–Ž         | 114/4250 [00:27<14:38,  4.71it/s]
  3%|β–Ž         | 115/4250 [00:27<14:08,  4.87it/s]
  3%|β–Ž         | 116/4250 [00:28<15:38,  4.40it/s]
  3%|β–Ž         | 117/4250 [00:28<15:11,  4.54it/s]
  3%|β–Ž         | 118/4250 [00:28<14:46,  4.66it/s]
  3%|β–Ž         | 119/4250 [00:28<15:08,  4.55it/s]
  3%|β–Ž         | 120/4250 [00:28<14:14,  4.83it/s]
  3%|β–Ž         | 121/4250 [00:29<14:19,  4.80it/s]
  3%|β–Ž         | 122/4250 [00:29<20:15,  3.40it/s]
  3%|β–Ž         | 123/4250 [00:29<18:33,  3.71it/s]
  3%|β–Ž         | 124/4250 [00:29<16:55,  4.06it/s]
  3%|β–Ž         | 125/4250 [00:30<17:07,  4.01it/s]
  3%|β–Ž         | 126/4250 [00:30<15:33,  4.42it/s]
  3%|β–Ž         | 127/4250 [00:30<14:50,  4.63it/s]
  3%|β–Ž         | 128/4250 [00:30<14:17,  4.81it/s]
  3%|β–Ž         | 129/4250 [00:31<17:35,  3.90it/s]
  3%|β–Ž         | 130/4250 [00:31<17:02,  4.03it/s]
  3%|β–Ž         | 131/4250 [00:31<15:32,  4.42it/s]
  3%|β–Ž         | 132/4250 [00:31<14:40,  4.68it/s]
  3%|β–Ž         | 133/4250 [00:31<15:39,  4.38it/s]
  3%|β–Ž         | 134/4250 [00:32<15:20,  4.47it/s]
  3%|β–Ž         | 135/4250 [00:32<15:08,  4.53it/s]
  3%|β–Ž         | 136/4250 [00:32<15:13,  4.50it/s]
  3%|β–Ž         | 137/4250 [00:32<15:00,  4.57it/s]
  3%|β–Ž         | 138/4250 [00:33<14:29,  4.73it/s]
  3%|β–Ž         | 139/4250 [00:33<14:58,  4.58it/s]
  3%|β–Ž         | 140/4250 [00:33<15:55,  4.30it/s]
  3%|β–Ž         | 141/4250 [00:33<15:59,  4.28it/s]
  3%|β–Ž         | 142/4250 [00:33<15:00,  4.56it/s]
  3%|β–Ž         | 143/4250 [00:34<14:38,  4.67it/s]
  3%|β–Ž         | 144/4250 [00:34<14:27,  4.73it/s]
  3%|β–Ž         | 145/4250 [00:34<16:59,  4.03it/s]
  3%|β–Ž         | 146/4250 [00:35<22:15,  3.07it/s]
  3%|β–Ž         | 147/4250 [00:35<19:50,  3.45it/s]
  3%|β–Ž         | 148/4250 [00:35<19:43,  3.47it/s]
  4%|β–Ž         | 149/4250 [00:35<18:58,  3.60it/s]
  4%|β–Ž         | 150/4250 [00:36<17:38,  3.87it/s]
  4%|β–Ž         | 151/4250 [00:36<16:10,  4.23it/s]
  4%|β–Ž         | 152/4250 [00:36<17:03,  4.00it/s]
  4%|β–Ž         | 153/4250 [00:36<16:24,  4.16it/s]
  4%|β–Ž         | 154/4250 [00:37<15:22,  4.44it/s]
  4%|β–Ž         | 155/4250 [00:37<14:32,  4.70it/s]
  4%|β–Ž         | 156/4250 [00:37<14:50,  4.60it/s]
  4%|β–Ž         | 157/4250 [00:37<14:30,  4.70it/s]
  4%|β–Ž         | 158/4250 [00:37<17:37,  3.87it/s]
  4%|β–Ž         | 159/4250 [00:38<18:35,  3.67it/s]
  4%|▍         | 160/4250 [00:38<17:00,  4.01it/s]
  4%|▍         | 161/4250 [00:38<16:02,  4.25it/s]
  4%|▍         | 162/4250 [00:38<14:55,  4.56it/s]
  4%|▍         | 163/4250 [00:39<14:47,  4.60it/s]
  4%|▍         | 164/4250 [00:39<18:40,  3.65it/s]
  4%|▍         | 165/4250 [00:39<18:13,  3.74it/s]
  4%|▍         | 166/4250 [00:40<18:24,  3.70it/s]
  4%|▍         | 167/4250 [00:40<17:29,  3.89it/s]
  4%|▍         | 168/4250 [00:40<15:56,  4.27it/s]
  4%|▍         | 169/4250 [00:40<15:32,  4.38it/s]
  4%|▍         | 170/4250 [00:40<15:28,  4.39it/s]
  4%|▍         | 171/4250 [00:41<16:01,  4.24it/s]
  4%|▍         | 172/4250 [00:41<15:13,  4.46it/s]
  4%|▍         | 173/4250 [00:41<18:22,  3.70it/s]
  4%|▍         | 174/4250 [00:41<16:38,  4.08it/s]
  4%|▍         | 175/4250 [00:42<19:24,  3.50it/s]
  4%|▍         | 176/4250 [00:42<19:20,  3.51it/s]
  4%|▍         | 177/4250 [00:42<17:04,  3.98it/s]
  4%|▍         | 178/4250 [00:42<16:07,  4.21it/s]
  4%|▍         | 179/4250 [00:43<15:41,  4.32it/s]
  4%|▍         | 180/4250 [00:43<14:28,  4.69it/s]
  4%|▍         | 181/4250 [00:43<14:38,  4.63it/s]
  4%|▍         | 182/4250 [00:43<17:11,  3.94it/s]
  4%|▍         | 183/4250 [00:44<16:36,  4.08it/s]
  4%|▍         | 184/4250 [00:44<16:28,  4.11it/s]
  4%|▍         | 185/4250 [00:44<15:07,  4.48it/s]
  4%|▍         | 186/4250 [00:44<14:39,  4.62it/s]
  4%|▍         | 187/4250 [00:44<13:47,  4.91it/s]
  4%|▍         | 188/4250 [00:45<14:41,  4.61it/s]
  4%|▍         | 189/4250 [00:45<14:11,  4.77it/s]
  4%|▍         | 190/4250 [00:45<13:45,  4.92it/s]
  4%|▍         | 191/4250 [00:45<14:23,  4.70it/s]
  5%|▍         | 192/4250 [00:45<14:11,  4.76it/s]
  5%|▍         | 193/4250 [00:46<13:55,  4.86it/s]
  5%|▍         | 194/4250 [00:46<16:42,  4.05it/s]
  5%|▍         | 195/4250 [00:46<15:38,  4.32it/s]
  5%|▍         | 196/4250 [00:46<14:26,  4.68it/s]
  5%|▍         | 197/4250 [00:47<14:55,  4.53it/s]
  5%|▍         | 198/4250 [00:47<15:19,  4.41it/s]
  5%|▍         | 199/4250 [00:47<15:25,  4.38it/s]
  5%|▍         | 200/4250 [00:47<15:35,  4.33it/s]
  5%|▍         | 201/4250 [00:48<15:14,  4.43it/s]
  5%|▍         | 202/4250 [00:48<15:31,  4.35it/s]
  5%|▍         | 203/4250 [00:48<14:26,  4.67it/s]
  5%|▍         | 204/4250 [00:48<13:47,  4.89it/s]
  5%|▍         | 205/4250 [00:48<14:44,  4.57it/s]
  5%|▍         | 206/4250 [00:49<14:29,  4.65it/s]
  5%|▍         | 207/4250 [00:49<16:45,  4.02it/s]
  5%|▍         | 208/4250 [00:49<15:19,  4.40it/s]
  5%|▍         | 209/4250 [00:49<15:12,  4.43it/s]
  5%|▍         | 210/4250 [00:49<14:01,  4.80it/s]
  5%|▍         | 211/4250 [00:50<15:09,  4.44it/s]
  5%|▍         | 212/4250 [00:50<14:26,  4.66it/s]
  5%|β–Œ         | 213/4250 [00:50<17:31,  3.84it/s]
  5%|β–Œ         | 214/4250 [00:50<15:24,  4.37it/s]
  5%|β–Œ         | 215/4250 [00:51<15:17,  4.40it/s]
  5%|β–Œ         | 216/4250 [00:51<19:04,  3.52it/s]
  5%|β–Œ         | 217/4250 [00:51<17:03,  3.94it/s]
  5%|β–Œ         | 218/4250 [00:51<15:56,  4.21it/s]
  5%|β–Œ         | 219/4250 [00:52<16:35,  4.05it/s]
  5%|β–Œ         | 220/4250 [00:52<16:40,  4.03it/s]
  5%|β–Œ         | 221/4250 [00:52<18:41,  3.59it/s]
  5%|β–Œ         | 222/4250 [00:53<20:01,  3.35it/s]
  5%|β–Œ         | 223/4250 [00:53<18:26,  3.64it/s]
  5%|β–Œ         | 224/4250 [00:53<16:31,  4.06it/s]
  5%|β–Œ         | 225/4250 [00:53<15:07,  4.43it/s]
  5%|β–Œ         | 226/4250 [00:53<14:23,  4.66it/s]
  5%|β–Œ         | 227/4250 [00:54<14:01,  4.78it/s]
  5%|β–Œ         | 228/4250 [00:54<13:47,  4.86it/s]
  5%|β–Œ         | 229/4250 [00:54<12:58,  5.17it/s]
  5%|β–Œ         | 230/4250 [00:54<14:21,  4.67it/s]
  5%|β–Œ         | 231/4250 [00:54<13:45,  4.87it/s]
  5%|β–Œ         | 232/4250 [00:55<13:35,  4.93it/s]
  5%|β–Œ         | 233/4250 [00:55<13:23,  5.00it/s]
  6%|β–Œ         | 234/4250 [00:55<15:41,  4.26it/s]
  6%|β–Œ         | 235/4250 [00:56<20:37,  3.24it/s]
  6%|β–Œ         | 236/4250 [00:56<21:51,  3.06it/s]
  6%|β–Œ         | 237/4250 [00:56<19:42,  3.39it/s]
  6%|β–Œ         | 238/4250 [00:56<17:25,  3.84it/s]
  6%|β–Œ         | 239/4250 [00:57<17:28,  3.83it/s]
  6%|β–Œ         | 240/4250 [00:57<19:56,  3.35it/s]
  6%|β–Œ         | 241/4250 [00:57<17:57,  3.72it/s]
  6%|β–Œ         | 242/4250 [00:57<16:26,  4.06it/s]
  6%|β–Œ         | 243/4250 [00:58<15:57,  4.19it/s]
  6%|β–Œ         | 244/4250 [00:58<15:58,  4.18it/s]
  6%|β–Œ         | 245/4250 [00:58<15:56,  4.19it/s]
  6%|β–Œ         | 246/4250 [00:59<24:58,  2.67it/s]
  6%|β–Œ         | 247/4250 [00:59<22:20,  2.99it/s]
  6%|β–Œ         | 248/4250 [00:59<19:38,  3.40it/s]
  6%|β–Œ         | 249/4250 [01:00<23:51,  2.80it/s]
  6%|β–Œ         | 250/4250 [01:00<25:17,  2.64it/s]
  6%|β–Œ         | 251/4250 [01:01<22:48,  2.92it/s]
  6%|β–Œ         | 252/4250 [01:01<19:31,  3.41it/s]
  6%|β–Œ         | 253/4250 [01:01<17:13,  3.87it/s]
  6%|β–Œ         | 254/4250 [01:01<17:53,  3.72it/s]
  6%|β–Œ         | 255/4250 [01:01<18:10,  3.66it/s]
  6%|β–Œ         | 256/4250 [01:02<17:55,  3.71it/s]
  6%|β–Œ         | 257/4250 [01:02<16:43,  3.98it/s]
  6%|β–Œ         | 258/4250 [01:02<15:35,  4.27it/s]
  6%|β–Œ         | 259/4250 [01:02<14:28,  4.59it/s]
  6%|β–Œ         | 260/4250 [01:03<15:44,  4.22it/s]
  6%|β–Œ         | 261/4250 [01:03<15:00,  4.43it/s]
  6%|β–Œ         | 262/4250 [01:03<13:52,  4.79it/s]
  6%|β–Œ         | 263/4250 [01:03<12:53,  5.15it/s]
  6%|β–Œ         | 264/4250 [01:03<14:53,  4.46it/s]
  6%|β–Œ         | 265/4250 [01:04<15:50,  4.19it/s]
  6%|β–‹         | 266/4250 [01:04<15:46,  4.21it/s]
  6%|β–‹         | 267/4250 [01:04<15:43,  4.22it/s]
  6%|β–‹         | 268/4250 [01:04<14:47,  4.49it/s]
  6%|β–‹         | 269/4250 [01:05<14:19,  4.63it/s]
  6%|β–‹         | 270/4250 [01:05<16:43,  3.97it/s]
  6%|β–‹         | 271/4250 [01:05<15:07,  4.38it/s]
  6%|β–‹         | 272/4250 [01:05<14:35,  4.54it/s]
  6%|β–‹         | 273/4250 [01:05<14:08,  4.69it/s]
  6%|β–‹         | 274/4250 [01:06<13:43,  4.83it/s]
  6%|β–‹         | 275/4250 [01:06<13:31,  4.90it/s]
  6%|β–‹         | 276/4250 [01:06<12:58,  5.11it/s]
  7%|β–‹         | 277/4250 [01:06<13:41,  4.84it/s]
  7%|β–‹         | 278/4250 [01:06<13:31,  4.89it/s]
  7%|β–‹         | 279/4250 [01:07<14:09,  4.67it/s]
  7%|β–‹         | 280/4250 [01:07<17:33,  3.77it/s]
  7%|β–‹         | 281/4250 [01:07<16:06,  4.10it/s]
  7%|β–‹         | 282/4250 [01:07<15:58,  4.14it/s]
  7%|β–‹         | 283/4250 [01:08<15:01,  4.40it/s]
  7%|β–‹         | 284/4250 [01:08<14:33,  4.54it/s]
  7%|β–‹         | 285/4250 [01:08<14:43,  4.49it/s]
  7%|β–‹         | 286/4250 [01:08<14:18,  4.62it/s]
  7%|β–‹         | 287/4250 [01:09<15:53,  4.16it/s]
  7%|β–‹         | 288/4250 [01:09<14:44,  4.48it/s]
  7%|β–‹         | 289/4250 [01:09<14:55,  4.42it/s]
  7%|β–‹         | 290/4250 [01:09<14:05,  4.69it/s]
  7%|β–‹         | 291/4250 [01:09<14:55,  4.42it/s]
  7%|β–‹         | 292/4250 [01:10<14:01,  4.70it/s]
  7%|β–‹         | 293/4250 [01:10<13:19,  4.95it/s]
  7%|β–‹         | 294/4250 [01:10<12:53,  5.11it/s]
  7%|β–‹         | 295/4250 [01:10<14:15,  4.62it/s]
  7%|β–‹         | 296/4250 [01:10<13:25,  4.91it/s]
  7%|β–‹         | 297/4250 [01:11<13:07,  5.02it/s]
  7%|β–‹         | 298/4250 [01:11<13:03,  5.04it/s]
  7%|β–‹         | 299/4250 [01:11<13:43,  4.80it/s]
  7%|β–‹         | 300/4250 [01:11<15:32,  4.23it/s]
  7%|β–‹         | 301/4250 [01:12<14:53,  4.42it/s]
  7%|β–‹         | 302/4250 [01:12<16:06,  4.09it/s]
  7%|β–‹         | 303/4250 [01:12<17:14,  3.82it/s]
  7%|β–‹         | 304/4250 [01:12<16:34,  3.97it/s]
  7%|β–‹         | 305/4250 [01:13<16:20,  4.03it/s]
  7%|β–‹         | 306/4250 [01:13<18:10,  3.62it/s]
  7%|β–‹         | 307/4250 [01:13<16:03,  4.09it/s]
  7%|β–‹         | 308/4250 [01:13<15:15,  4.31it/s]
  7%|β–‹         | 309/4250 [01:14<15:01,  4.37it/s]
  7%|β–‹         | 310/4250 [01:14<14:24,  4.56it/s]
  7%|β–‹         | 311/4250 [01:14<13:58,  4.70it/s]
  7%|β–‹         | 312/4250 [01:14<16:55,  3.88it/s]
  7%|β–‹         | 313/4250 [01:15<16:12,  4.05it/s]
  7%|β–‹         | 314/4250 [01:15<16:17,  4.03it/s]
  7%|β–‹         | 315/4250 [01:15<15:12,  4.31it/s]
  7%|β–‹         | 316/4250 [01:15<14:32,  4.51it/s]
  7%|β–‹         | 317/4250 [01:15<15:41,  4.18it/s]
  7%|β–‹         | 318/4250 [01:16<15:25,  4.25it/s]
  8%|β–Š         | 319/4250 [01:16<15:46,  4.15it/s]
  8%|β–Š         | 320/4250 [01:16<16:25,  3.99it/s]
  8%|β–Š         | 321/4250 [01:16<15:03,  4.35it/s]
  8%|β–Š         | 322/4250 [01:17<14:35,  4.49it/s]
  8%|β–Š         | 323/4250 [01:17<13:27,  4.86it/s]
  8%|β–Š         | 324/4250 [01:17<13:13,  4.95it/s]
  8%|β–Š         | 325/4250 [01:17<13:22,  4.89it/s]
  8%|β–Š         | 326/4250 [01:17<12:56,  5.05it/s]
  8%|β–Š         | 327/4250 [01:18<12:34,  5.20it/s]
  8%|β–Š         | 328/4250 [01:18<16:35,  3.94it/s]
  8%|β–Š         | 329/4250 [01:18<17:45,  3.68it/s]
  8%|β–Š         | 330/4250 [01:18<16:40,  3.92it/s]
  8%|β–Š         | 331/4250 [01:19<16:15,  4.02it/s]
  8%|β–Š         | 332/4250 [01:19<15:10,  4.31it/s]
  8%|β–Š         | 333/4250 [01:19<14:15,  4.58it/s]
  8%|β–Š         | 334/4250 [01:19<14:33,  4.48it/s]
  8%|β–Š         | 335/4250 [01:20<15:52,  4.11it/s]
  8%|β–Š         | 336/4250 [01:20<15:40,  4.16it/s]
  8%|β–Š         | 337/4250 [01:20<14:30,  4.50it/s]
  8%|β–Š         | 338/4250 [01:20<13:51,  4.70it/s]
  8%|β–Š         | 339/4250 [01:21<17:39,  3.69it/s]
  8%|β–Š         | 340/4250 [01:21<16:24,  3.97it/s]
  8%|β–Š         | 341/4250 [01:21<17:23,  3.75it/s]
  8%|β–Š         | 342/4250 [01:21<15:45,  4.13it/s]
  8%|β–Š         | 343/4250 [01:22<16:07,  4.04it/s]
  8%|β–Š         | 344/4250 [01:22<15:55,  4.09it/s]
  8%|β–Š         | 345/4250 [01:22<17:25,  3.74it/s]
  8%|β–Š         | 346/4250 [01:22<18:30,  3.52it/s]
  8%|β–Š         | 347/4250 [01:23<17:09,  3.79it/s]
  8%|β–Š         | 348/4250 [01:23<18:01,  3.61it/s]
  8%|β–Š         | 349/4250 [01:23<16:19,  3.98it/s]
  8%|β–Š         | 350/4250 [01:23<16:02,  4.05it/s]
  8%|β–Š         | 351/4250 [01:24<15:28,  4.20it/s]
  8%|β–Š         | 352/4250 [01:24<15:45,  4.12it/s]
  8%|β–Š         | 353/4250 [01:24<14:05,  4.61it/s]
  8%|β–Š         | 354/4250 [01:24<14:12,  4.57it/s]
  8%|β–Š         | 355/4250 [01:25<15:18,  4.24it/s]
  8%|β–Š         | 356/4250 [01:25<14:48,  4.38it/s]
  8%|β–Š         | 357/4250 [01:25<14:00,  4.63it/s]
  8%|β–Š         | 358/4250 [01:25<13:29,  4.81it/s]
  8%|β–Š         | 359/4250 [01:25<12:50,  5.05it/s]
  8%|β–Š         | 360/4250 [01:26<14:46,  4.39it/s]
  8%|β–Š         | 361/4250 [01:26<14:14,  4.55it/s]
  9%|β–Š         | 362/4250 [01:26<13:28,  4.81it/s]
  9%|β–Š         | 363/4250 [01:26<14:21,  4.51it/s]
  9%|β–Š         | 364/4250 [01:27<20:35,  3.15it/s]
  9%|β–Š         | 365/4250 [01:27<19:18,  3.35it/s]
  9%|β–Š         | 366/4250 [01:27<18:56,  3.42it/s]
  9%|β–Š         | 367/4250 [01:27<17:11,  3.77it/s]
  9%|β–Š         | 368/4250 [01:28<15:13,  4.25it/s]
  9%|β–Š         | 369/4250 [01:28<16:11,  4.00it/s]
  9%|β–Š         | 370/4250 [01:28<15:10,  4.26it/s]
  9%|β–Š         | 371/4250 [01:28<14:18,  4.52it/s]
  9%|β–‰         | 372/4250 [01:29<13:52,  4.66it/s]
  9%|β–‰         | 373/4250 [01:29<15:47,  4.09it/s]
  9%|β–‰         | 374/4250 [01:29<15:20,  4.21it/s]
  9%|β–‰         | 375/4250 [01:30<25:51,  2.50it/s]
  9%|β–‰         | 376/4250 [01:30<22:05,  2.92it/s]
  9%|β–‰         | 377/4250 [01:30<19:34,  3.30it/s]
  9%|β–‰         | 378/4250 [01:30<17:28,  3.69it/s]
  9%|β–‰         | 379/4250 [01:31<15:52,  4.06it/s]
  9%|β–‰         | 380/4250 [01:31<15:12,  4.24it/s]
  9%|β–‰         | 381/4250 [01:31<14:26,  4.46it/s]
  9%|β–‰         | 382/4250 [01:31<13:57,  4.62it/s]
  9%|β–‰         | 383/4250 [01:32<15:16,  4.22it/s]
  9%|β–‰         | 384/4250 [01:32<14:11,  4.54it/s]
  9%|β–‰         | 385/4250 [01:32<16:37,  3.87it/s]
  9%|β–‰         | 386/4250 [01:32<18:50,  3.42it/s]
  9%|β–‰         | 387/4250 [01:33<16:38,  3.87it/s]
  9%|β–‰         | 388/4250 [01:33<15:54,  4.05it/s]
  9%|β–‰         | 389/4250 [01:33<15:11,  4.24it/s]
  9%|β–‰         | 390/4250 [01:33<15:52,  4.05it/s]
  9%|β–‰         | 391/4250 [01:33<14:31,  4.43it/s]
  9%|β–‰         | 392/4250 [01:34<14:36,  4.40it/s]
  9%|β–‰         | 393/4250 [01:34<13:42,  4.69it/s]
  9%|β–‰         | 394/4250 [01:34<13:42,  4.69it/s]
  9%|β–‰         | 395/4250 [01:34<13:04,  4.91it/s]
  9%|β–‰         | 396/4250 [01:34<12:50,  5.00it/s]
  9%|β–‰         | 397/4250 [01:35<13:30,  4.75it/s]
  9%|β–‰         | 398/4250 [01:35<14:10,  4.53it/s]
  9%|β–‰         | 399/4250 [01:35<13:17,  4.83it/s]
  9%|β–‰         | 400/4250 [01:35<14:40,  4.37it/s]
  9%|β–‰         | 401/4250 [01:36<14:06,  4.54it/s]
  9%|β–‰         | 402/4250 [01:36<15:53,  4.04it/s]
  9%|β–‰         | 403/4250 [01:36<15:28,  4.14it/s]
 10%|β–‰         | 404/4250 [01:36<14:41,  4.36it/s]
 10%|β–‰         | 405/4250 [01:37<15:17,  4.19it/s]
 10%|β–‰         | 406/4250 [01:37<15:58,  4.01it/s]
 10%|β–‰         | 407/4250 [01:38<23:04,  2.78it/s]
 10%|β–‰         | 408/4250 [01:38<21:23,  2.99it/s]
 10%|β–‰         | 409/4250 [01:38<18:34,  3.45it/s]
 10%|β–‰         | 410/4250 [01:38<17:37,  3.63it/s]
 10%|β–‰         | 411/4250 [01:38<17:21,  3.68it/s]
 10%|β–‰         | 412/4250 [01:39<18:26,  3.47it/s]
 10%|β–‰         | 413/4250 [01:39<17:12,  3.72it/s]
 10%|β–‰         | 414/4250 [01:39<16:36,  3.85it/s]
 10%|β–‰         | 415/4250 [01:39<15:21,  4.16it/s]
 10%|β–‰         | 416/4250 [01:40<14:56,  4.28it/s]
 10%|β–‰         | 417/4250 [01:40<14:55,  4.28it/s]
 10%|β–‰         | 418/4250 [01:40<13:45,  4.64it/s]
 10%|β–‰         | 419/4250 [01:40<14:56,  4.27it/s]
 10%|β–‰         | 420/4250 [01:41<15:00,  4.25it/s]
 10%|β–‰         | 421/4250 [01:41<15:28,  4.12it/s]
 10%|β–‰         | 422/4250 [01:41<14:59,  4.26it/s]
 10%|β–‰         | 423/4250 [01:41<13:50,  4.61it/s]
 10%|β–‰         | 424/4250 [01:42<14:34,  4.37it/s]
 10%|β–ˆ         | 425/4250 [01:42<14:28,  4.40it/s][INFO|trainer.py:805] 2024-08-30 20:27:31,190 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`,  you can safely ignore this message.
[INFO|trainer.py:3788] 2024-08-30 20:27:31,192 >> 
***** Running Evaluation *****
[INFO|trainer.py:3790] 2024-08-30 20:27:31,192 >>   Num examples = 6810
[INFO|trainer.py:3793] 2024-08-30 20:27:31,192 >>   Batch size = 8


  0%|          | 0/852 [00:00<?, ?it/s]

  1%|          | 9/852 [00:00<00:09, 88.66it/s]

  2%|▏         | 18/852 [00:00<00:10, 79.48it/s]

  3%|β–Ž         | 27/852 [00:00<00:10, 78.72it/s]

  4%|▍         | 35/852 [00:00<00:10, 77.17it/s]

  5%|β–Œ         | 43/852 [00:00<00:10, 77.47it/s]

  6%|β–Œ         | 51/852 [00:00<00:10, 78.01it/s]

  7%|β–‹         | 60/852 [00:00<00:10, 78.82it/s]

  8%|β–Š         | 68/852 [00:00<00:10, 76.55it/s]

  9%|β–‰         | 76/852 [00:00<00:10, 76.57it/s]

 10%|β–‰         | 84/852 [00:01<00:10, 74.53it/s]

 11%|β–ˆ         | 92/852 [00:01<00:10, 74.88it/s]

 12%|β–ˆβ–        | 100/852 [00:01<00:10, 74.67it/s]

 13%|β–ˆβ–Ž        | 108/852 [00:01<00:09, 74.65it/s]

 14%|β–ˆβ–Ž        | 116/852 [00:01<00:09, 75.39it/s]

 15%|β–ˆβ–        | 125/852 [00:01<00:09, 76.70it/s]

 16%|β–ˆβ–Œ        | 133/852 [00:01<00:09, 72.98it/s]

 17%|β–ˆβ–‹        | 141/852 [00:01<00:09, 73.08it/s]

 17%|β–ˆβ–‹        | 149/852 [00:01<00:09, 72.57it/s]

 18%|β–ˆβ–Š        | 157/852 [00:02<00:09, 74.49it/s]

 19%|β–ˆβ–‰        | 165/852 [00:02<00:09, 75.40it/s]

 20%|β–ˆβ–ˆ        | 173/852 [00:02<00:08, 75.96it/s]

 21%|β–ˆβ–ˆ        | 181/852 [00:02<00:08, 76.27it/s]

 22%|β–ˆβ–ˆβ–       | 190/852 [00:02<00:08, 77.54it/s]

 23%|β–ˆβ–ˆβ–Ž       | 198/852 [00:02<00:08, 77.17it/s]

 24%|β–ˆβ–ˆβ–       | 206/852 [00:02<00:08, 76.97it/s]

 25%|β–ˆβ–ˆβ–Œ       | 214/852 [00:02<00:08, 75.85it/s]

 26%|β–ˆβ–ˆβ–Œ       | 222/852 [00:02<00:08, 77.02it/s]

 27%|β–ˆβ–ˆβ–‹       | 230/852 [00:03<00:07, 77.88it/s]

 28%|β–ˆβ–ˆβ–Š       | 238/852 [00:03<00:07, 77.06it/s]

 29%|β–ˆβ–ˆβ–‰       | 246/852 [00:03<00:08, 75.49it/s]

 30%|β–ˆβ–ˆβ–‰       | 255/852 [00:03<00:07, 77.83it/s]

 31%|β–ˆβ–ˆβ–ˆ       | 263/852 [00:03<00:07, 78.44it/s]

 32%|β–ˆβ–ˆβ–ˆβ–      | 271/852 [00:03<00:07, 77.33it/s]

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 280/852 [00:03<00:07, 78.78it/s]

 34%|β–ˆβ–ˆβ–ˆβ–      | 288/852 [00:03<00:07, 78.13it/s]

 35%|β–ˆβ–ˆβ–ˆβ–      | 296/852 [00:03<00:07, 78.46it/s]

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 305/852 [00:03<00:06, 79.51it/s]

 37%|β–ˆβ–ˆβ–ˆβ–‹      | 313/852 [00:04<00:06, 77.59it/s]

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 322/852 [00:04<00:06, 79.45it/s]

 39%|β–ˆβ–ˆβ–ˆβ–Š      | 330/852 [00:04<00:06, 78.56it/s]

 40%|β–ˆβ–ˆβ–ˆβ–‰      | 338/852 [00:04<00:06, 75.62it/s]

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 346/852 [00:04<00:06, 76.01it/s]

 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 354/852 [00:04<00:06, 75.26it/s]

 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 362/852 [00:04<00:06, 75.94it/s]

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 370/852 [00:04<00:06, 76.55it/s]

 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 378/852 [00:04<00:06, 77.17it/s]

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 386/852 [00:05<00:06, 76.59it/s]

 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 395/852 [00:05<00:05, 77.79it/s]

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 403/852 [00:05<00:05, 77.58it/s]

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 411/852 [00:05<00:05, 75.31it/s]

 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 419/852 [00:05<00:05, 76.29it/s]

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 427/852 [00:05<00:05, 74.65it/s]

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 435/852 [00:05<00:05, 75.66it/s]

 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 443/852 [00:05<00:05, 76.76it/s]

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 451/852 [00:05<00:05, 77.61it/s]

 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 460/852 [00:05<00:05, 77.74it/s]

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 468/852 [00:06<00:05, 75.24it/s]

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 476/852 [00:06<00:05, 72.34it/s]

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 484/852 [00:06<00:05, 72.40it/s]

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 492/852 [00:06<00:04, 74.29it/s]

 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 501/852 [00:06<00:04, 76.52it/s]

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 509/852 [00:06<00:04, 75.58it/s]

 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 517/852 [00:06<00:04, 76.67it/s]

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 525/852 [00:06<00:04, 75.52it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 533/852 [00:06<00:04, 75.91it/s]

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 541/852 [00:07<00:04, 77.03it/s]

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 549/852 [00:07<00:04, 75.19it/s]

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 557/852 [00:07<00:03, 75.67it/s]

 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 566/852 [00:07<00:03, 77.52it/s]

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 574/852 [00:07<00:03, 77.51it/s]

 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 582/852 [00:07<00:03, 76.66it/s]

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 590/852 [00:07<00:03, 75.98it/s]

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 598/852 [00:07<00:03, 76.35it/s]

 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 606/852 [00:07<00:03, 76.06it/s]

 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 614/852 [00:08<00:03, 75.05it/s]

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 622/852 [00:08<00:03, 75.43it/s]

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 630/852 [00:08<00:02, 74.34it/s]

 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 638/852 [00:08<00:02, 75.78it/s]

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 646/852 [00:08<00:02, 73.52it/s]

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 654/852 [00:08<00:02, 75.08it/s]

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 662/852 [00:08<00:02, 75.52it/s]

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 670/852 [00:08<00:02, 76.49it/s]

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 678/852 [00:08<00:02, 77.21it/s]

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 686/852 [00:08<00:02, 77.55it/s]

 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 695/852 [00:09<00:01, 78.56it/s]

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 704/852 [00:09<00:01, 79.29it/s]

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 713/852 [00:09<00:01, 79.99it/s]

 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 721/852 [00:09<00:01, 78.74it/s]

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 730/852 [00:09<00:01, 79.95it/s]

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 738/852 [00:09<00:01, 79.68it/s]

 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 747/852 [00:09<00:01, 80.02it/s]

 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 756/852 [00:09<00:01, 80.47it/s]

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 765/852 [00:09<00:01, 80.21it/s]

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 774/852 [00:10<00:00, 79.37it/s]

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 782/852 [00:10<00:00, 78.22it/s]

 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 790/852 [00:10<00:00, 77.38it/s]

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 798/852 [00:10<00:00, 76.61it/s]

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 807/852 [00:10<00:00, 78.06it/s]

 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 815/852 [00:10<00:00, 76.73it/s]

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 824/852 [00:10<00:00, 77.89it/s]

 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 833/852 [00:10<00:00, 78.72it/s]

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 841/852 [00:10<00:00, 77.89it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 849/852 [00:11<00:00, 75.32it/s]
                                                  


                                                 

 10%|β–ˆ         | 425/4250 [01:57<14:28,  4.40it/s]

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 852/852 [00:14<00:00, 75.32it/s]

                                                 [INFO|trainer.py:3478] 2024-08-30 20:27:45,881 >> Saving model checkpoint to /content/dissertation/scripts/ner/output/checkpoint-425
[INFO|configuration_utils.py:472] 2024-08-30 20:27:45,882 >> Configuration saved in /content/dissertation/scripts/ner/output/checkpoint-425/config.json
[INFO|modeling_utils.py:2690] 2024-08-30 20:27:47,247 >> Model weights saved in /content/dissertation/scripts/ner/output/checkpoint-425/model.safetensors
[INFO|tokenization_utils_base.py:2574] 2024-08-30 20:27:47,248 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/checkpoint-425/tokenizer_config.json
[INFO|tokenization_utils_base.py:2583] 2024-08-30 20:27:47,248 >> Special tokens file saved in /content/dissertation/scripts/ner/output/checkpoint-425/special_tokens_map.json
[INFO|tokenization_utils_base.py:2574] 2024-08-30 20:27:50,017 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
[INFO|tokenization_utils_base.py:2583] 2024-08-30 20:27:50,017 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json

 10%|β–ˆ         | 426/4250 [02:01<6:17:25,  5.92s/it]
 10%|β–ˆ         | 427/4250 [02:01<4:27:24,  4.20s/it]
 10%|β–ˆ         | 428/4250 [02:01<3:11:11,  3.00s/it]
 10%|β–ˆ         | 429/4250 [02:02<2:20:01,  2.20s/it]
 10%|β–ˆ         | 430/4250 [02:02<1:41:14,  1.59s/it]
 10%|β–ˆ         | 431/4250 [02:02<1:15:55,  1.19s/it]
 10%|β–ˆ         | 432/4250 [02:02<56:49,  1.12it/s]  
 10%|β–ˆ         | 433/4250 [02:02<43:08,  1.47it/s]
 10%|β–ˆ         | 434/4250 [02:03<35:31,  1.79it/s]
 10%|β–ˆ         | 435/4250 [02:03<28:25,  2.24it/s]
 10%|β–ˆ         | 436/4250 [02:03<24:21,  2.61it/s]
 10%|β–ˆ         | 437/4250 [02:03<20:52,  3.04it/s]
 10%|β–ˆ         | 438/4250 [02:04<18:32,  3.43it/s]
 10%|β–ˆ         | 439/4250 [02:04<17:05,  3.72it/s]
 10%|β–ˆ         | 440/4250 [02:04<15:35,  4.07it/s]
 10%|β–ˆ         | 441/4250 [02:04<14:45,  4.30it/s]
 10%|β–ˆ         | 442/4250 [02:04<14:42,  4.32it/s]
 10%|β–ˆ         | 443/4250 [02:05<16:22,  3.88it/s]
 10%|β–ˆ         | 444/4250 [02:05<15:35,  4.07it/s]
 10%|β–ˆ         | 445/4250 [02:05<14:09,  4.48it/s]
 10%|β–ˆ         | 446/4250 [02:05<15:10,  4.18it/s]
 11%|β–ˆ         | 447/4250 [02:06<14:17,  4.43it/s]
 11%|β–ˆ         | 448/4250 [02:06<13:13,  4.79it/s]
 11%|β–ˆ         | 449/4250 [02:06<13:06,  4.83it/s]
 11%|β–ˆ         | 450/4250 [02:06<15:05,  4.20it/s]
 11%|β–ˆ         | 451/4250 [02:07<15:49,  4.00it/s]
 11%|β–ˆ         | 452/4250 [02:07<14:54,  4.25it/s]
 11%|β–ˆ         | 453/4250 [02:07<15:41,  4.03it/s]
 11%|β–ˆ         | 454/4250 [02:07<15:39,  4.04it/s]
 11%|β–ˆ         | 455/4250 [02:08<15:58,  3.96it/s]
 11%|β–ˆ         | 456/4250 [02:08<14:30,  4.36it/s]
 11%|β–ˆ         | 457/4250 [02:08<13:21,  4.73it/s]
 11%|β–ˆ         | 458/4250 [02:08<14:27,  4.37it/s]
 11%|β–ˆ         | 459/4250 [02:09<24:59,  2.53it/s]
 11%|β–ˆ         | 460/4250 [02:09<25:16,  2.50it/s]
 11%|β–ˆ         | 461/4250 [02:10<23:13,  2.72it/s]
 11%|β–ˆ         | 462/4250 [02:10<20:18,  3.11it/s]
 11%|β–ˆ         | 463/4250 [02:10<18:00,  3.51it/s]
 11%|β–ˆ         | 464/4250 [02:10<16:52,  3.74it/s]
 11%|β–ˆ         | 465/4250 [02:10<15:29,  4.07it/s]
 11%|β–ˆ         | 466/4250 [02:11<14:52,  4.24it/s]
 11%|β–ˆ         | 467/4250 [02:11<15:16,  4.13it/s]
 11%|β–ˆ         | 468/4250 [02:11<15:22,  4.10it/s]
 11%|β–ˆ         | 469/4250 [02:11<14:56,  4.22it/s]
 11%|β–ˆ         | 470/4250 [02:12<14:16,  4.41it/s]
 11%|β–ˆ         | 471/4250 [02:12<13:02,  4.83it/s]
 11%|β–ˆ         | 472/4250 [02:12<14:34,  4.32it/s]
 11%|β–ˆ         | 473/4250 [02:12<14:11,  4.43it/s]
 11%|β–ˆ         | 474/4250 [02:13<15:34,  4.04it/s]
 11%|β–ˆ         | 475/4250 [02:13<19:44,  3.19it/s]
 11%|β–ˆ         | 476/4250 [02:13<19:06,  3.29it/s]
 11%|β–ˆ         | 477/4250 [02:14<18:12,  3.45it/s]
 11%|β–ˆ         | 478/4250 [02:14<18:34,  3.39it/s]
 11%|β–ˆβ–        | 479/4250 [02:14<17:12,  3.65it/s]
 11%|β–ˆβ–        | 480/4250 [02:14<15:17,  4.11it/s]
 11%|β–ˆβ–        | 481/4250 [02:15<16:05,  3.90it/s]
 11%|β–ˆβ–        | 482/4250 [02:15<17:51,  3.52it/s]
 11%|β–ˆβ–        | 483/4250 [02:15<16:15,  3.86it/s]
 11%|β–ˆβ–        | 484/4250 [02:15<14:39,  4.28it/s]
 11%|β–ˆβ–        | 485/4250 [02:16<14:48,  4.24it/s]
 11%|β–ˆβ–        | 486/4250 [02:16<15:40,  4.00it/s]
 11%|β–ˆβ–        | 487/4250 [02:16<14:28,  4.33it/s]
 11%|β–ˆβ–        | 488/4250 [02:16<14:12,  4.41it/s]
 12%|β–ˆβ–        | 489/4250 [02:17<18:04,  3.47it/s]
 12%|β–ˆβ–        | 490/4250 [02:17<16:37,  3.77it/s]
 12%|β–ˆβ–        | 491/4250 [02:17<16:44,  3.74it/s]
 12%|β–ˆβ–        | 492/4250 [02:17<15:59,  3.92it/s]
 12%|β–ˆβ–        | 493/4250 [02:18<14:35,  4.29it/s]
 12%|β–ˆβ–        | 494/4250 [02:18<15:03,  4.16it/s]
 12%|β–ˆβ–        | 495/4250 [02:18<17:00,  3.68it/s]
 12%|β–ˆβ–        | 496/4250 [02:18<16:06,  3.89it/s]
 12%|β–ˆβ–        | 497/4250 [02:19<14:40,  4.26it/s]