--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: fruit-ripeness results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.28518518805503845 --- # fruit-ripeness Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### ripe apple ![ripe apple](images/ripe_apple.jpg) #### ripe mango ![ripe mango](images/ripe_mango.jpg) #### ripe papaya ![ripe papaya](images/ripe_papaya.jpg) #### ripe pomegranate ![ripe pomegranate](images/ripe_pomegranate.jpg) #### rotten apple ![rotten apple](images/rotten_apple.jpg) #### rotten mango ![rotten mango](images/rotten_mango.jpg) #### rotten papaya ![rotten papaya](images/rotten_papaya.jpg) #### rotten pomegranate ![rotten pomegranate](images/rotten_pomegranate.jpg) #### unripe apple ![unripe apple](images/unripe_apple.jpg) #### unripe mango ![unripe mango](images/unripe_mango.jpg) #### unripe papaya ![unripe papaya](images/unripe_papaya.jpg) #### unripe pomegranate ![unripe pomegranate](images/unripe_pomegranate.jpg)