--- language: - bn - cs - de - en - et - fi - fr - gu - ha - hi - is - ja - kk - km - lt - lv - pl - ps - ru - ta - tr - uk - xh - zh - zu - ne - ro - si tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:1327190 - loss:CoSENTLoss base_model: sentence-transformers/distiluse-base-multilingual-cased-v2 widget: - source_sentence: यहाँका केही धार्मिक सम्पदाहरू यस प्रकार रहेका छन्। sentences: - A party works journalists from advertisements about a massive Himalayan post. - Some religious affiliations here remain. - In Spain, the strict opposition of Roman Catholic churches is found to have assumed a marriage similar to male beach wives. - source_sentence: Das Feuer konnte rasch wieder gelöscht werden. sentences: - In particular, Spot has an exclusive software platform that is only specially developed for Spot, and users can set up the Spot robot function themselves through a variety of applications. - The fire was quickly extinguished. - The PSG has made it clear that the Italian national will not be allowed to leave in any condition, and Barcelona feels the reflections of this interest by losing Neymar's greatest values. - source_sentence: He possesses a pistol with silver bullets for protection from vampires and werewolves. sentences: - Er besitzt eine Pistole mit silbernen Kugeln zum Schutz vor Vampiren und Werwölfen. - Bibimbap umfasst Reis, Spinat, Rettich, Bohnensprossen. - BSAC profitierte auch von den großen, aber nicht unbeschränkten persönlichen Vermögen von Rhodos und Beit vor ihrem Tod. - source_sentence: To the west of the Badger Head Inlier is the Port Sorell Formation, a tectonic mélange of marine sediments and dolerite. sentences: - Er brennt einen Speer und brennt Flammen aus seinem Mund, wenn er wütend ist. - Westlich des Badger Head Inlier befindet sich die Port Sorell Formation, eine tektonische Mischung aus Sedimenten und Dolerit. - Public Lynching and Mob Violence under Modi Government - source_sentence: Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor. sentences: - This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals. - Helsinki University ranks 75th among universities for 2010. - Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans. datasets: - RicardoRei/wmt-da-human-evaluation - wmt/wmt20_mlqe_task1 pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts eval type: sts-eval metrics: - type: pearson_cosine value: 0.42072704811442524 name: Pearson Cosine - type: spearman_cosine value: 0.41492248565322287 name: Spearman Cosine - type: pearson_cosine value: 0.04798468697271309 name: Pearson Cosine - type: spearman_cosine value: 0.09163381637023821 name: Spearman Cosine - type: pearson_cosine value: 0.13419394852857455 name: Pearson Cosine - type: spearman_cosine value: 0.14021002112020048 name: Spearman Cosine - type: pearson_cosine value: 0.3686145842456057 name: Pearson Cosine - type: spearman_cosine value: 0.37403547930478337 name: Spearman Cosine - type: pearson_cosine value: 0.4036712785577461 name: Pearson Cosine - type: spearman_cosine value: 0.40203424777388935 name: Spearman Cosine - type: pearson_cosine value: 0.4765959009301104 name: Pearson Cosine - type: spearman_cosine value: 0.45931707741919825 name: Spearman Cosine - type: pearson_cosine value: 0.30588658376090044 name: Pearson Cosine - type: spearman_cosine value: 0.26881979874382245 name: Spearman Cosine - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.41673846273409015 name: Pearson Cosine - type: spearman_cosine value: 0.413125969680318 name: Spearman Cosine - type: pearson_cosine value: 0.025760972016236502 name: Pearson Cosine - type: spearman_cosine value: 0.06798878866242045 name: Spearman Cosine - type: pearson_cosine value: 0.14352602331425646 name: Pearson Cosine - type: spearman_cosine value: 0.19612784355376908 name: Spearman Cosine - type: pearson_cosine value: 0.3719362123606391 name: Pearson Cosine - type: spearman_cosine value: 0.37629168606256713 name: Spearman Cosine - type: pearson_cosine value: 0.39800102996751985 name: Pearson Cosine - type: spearman_cosine value: 0.40749186555429473 name: Spearman Cosine - type: pearson_cosine value: 0.42084642716136017 name: Pearson Cosine - type: spearman_cosine value: 0.4185137269420985 name: Spearman Cosine - type: pearson_cosine value: 0.31870110899456183 name: Pearson Cosine - type: spearman_cosine value: 0.2675729909480732 name: Spearman Cosine --- # SentenceTransformer based on sentence-transformers/distiluse-base-multilingual-cased-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) on the [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation), [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1), [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) and [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) datasets. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) - **Maximum Sequence Length:** 128 tokens - **Output Dimensionality:** 512 dimensions - **Similarity Function:** Cosine Similarity - **Training Datasets:** - [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) - [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) - **Languages:** bn, cs, de, en, et, fi, fr, gu, ha, hi, is, ja, kk, km, lt, lv, pl, ps, ru, ta, tr, uk, xh, zh, zu, ne, ro, si ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): MultiHeadGeneralizedPooling( (Q): ModuleList( (0-7): 8 x Linear(in_features=96, out_features=1, bias=True) ) (P_K): ModuleList( (0-7): 8 x Linear(in_features=768, out_features=96, bias=True) ) ) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("RomainDarous/pre_training_dot_product_generalized_model") # Run inference sentences = [ 'Garnizoana otomană se retrage în sudul Dunării, iar după 164 de ani cetatea intră din nou sub stăpânirea europenilor.', 'Ottoman garnisoana is withdrawing into the south of the Danube and, after 164 years, it is once again under the control of Europeans.', 'This is because, once again, we have taken into account the fact that we have adopted a large number of legislative proposals.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 512] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: `sts-eval`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test`, `sts-test` and `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | sts-eval | sts-test | |:--------------------|:-----------|:-----------| | pearson_cosine | 0.4207 | 0.3187 | | **spearman_cosine** | **0.4149** | **0.2676** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.048 | | **spearman_cosine** | **0.0916** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.1342 | | **spearman_cosine** | **0.1402** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.3686 | | **spearman_cosine** | **0.374** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.4037 | | **spearman_cosine** | **0.402** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.4766 | | **spearman_cosine** | **0.4593** | #### Semantic Similarity * Dataset: `sts-eval` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.3059 | | **spearman_cosine** | **0.2688** | ## Training Details ### Training Datasets #### wmt_da * Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425) * Size: 1,285,190 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------| | Im Kanzleramt hatte der in Hamburg lebende türkische Journalist ein T-Shirt mit der türkischen und deutschen Aufschrift "Freiheit für Journalisten" übergezogen und war in die erste Reihe gegangen. | In the Chancellery, the Turkish journalist, who lives in Hamburg, had covered a T-shirt with the Turkish and German inscription "Freedom for Journalists" and had gone into the front row. | 0.93 | | Das Außenministerium in London bezeichnete die Festsetzung des Schiffes als illegal. "Das ist Teil eines Musters von Versuchen, die Freiheit der Meere zu beeinträchtigen. Wir arbeiten mit unseren internationalen Partnern daran, die Schifffahrt und das Internationale Recht aufrechtzuerhalten", hieß es in einer Mitteilung am Freitag. | The State Department in London called the ship's fixing was illegal. ′′ This is part of a pattern of attempts to interfere with sea freedom. We are working with our international partners to maintain shipping and international law ", said a message on Friday. | 0.9 | | Unfortunately, the list it belongs to is that of unique buildings that are in danger of collapse. | Bohužel, seznam patří k jedinečné budovy, které jsou v nebezpečí kolapsu. | 0.14 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_en_de * Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | Early Muslim traders and merchants visited Bengal while traversing the Silk Road in the first millennium. | Frühe muslimische Händler und Kaufleute besuchten Bengalen, während sie im ersten Jahrtausend die Seidenstraße durchquerten. | 0.9233333468437195 | | While Fran dissipated shortly after that, the tropical wave progressed into the northeastern Pacific Ocean. | Während Fran kurz danach zerstreute, entwickelte sich die tropische Welle in den nordöstlichen Pazifischen Ozean. | 0.8899999856948853 | | Distressed securities include such events as restructurings, recapitalizations, and bankruptcies. | Zu den belasteten Wertpapieren gehören Restrukturierungen, Rekapitalisierungen und Insolvenzen. | 0.9300000071525574 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_en_zh * Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:-------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------------------------| | In the late 1980s, the hotel's reputation declined, and it functioned partly as a "backpackers hangout." | 在 20 世纪 80 年代末 , 这家旅馆的声誉下降了 , 部分地起到了 "背包吊销" 的作用。 | 0.40666666626930237 | | From 1870 to 1915, 36 million Europeans migrated away from Europe. | 从 1870 年到 1915 年 , 3, 600 万欧洲人从欧洲移民。 | 0.8333333730697632 | | In some photos, the footpads did press into the regolith, especially when they moved sideways at touchdown. | 在一些照片中 , 脚垫确实挤进了后台 , 尤其是当他们在触地时侧面移动时。 | 0.33000001311302185 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_et_en * Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | Gruusias vahistati president Mihhail Saakašvili pressibüroo nõunik Simon Kiladze, keda süüdistati spioneerimises. | In Georgia, an adviser to the press office of President Mikhail Saakashvili, Simon Kiladze, was arrested and accused of spying. | 0.9466666579246521 | | Nii teadmissotsioloogia pooldajad tavaliselt Kuhni tõlgendavadki, arendades tema vaated sõnaselgeks relativismiks. | This is how supporters of knowledge sociology usually interpret Kuhn by developing his views into an explicit relativism. | 0.9366666674613953 | | 18. jaanuaril 2003 haarasid mitmeid Canberra eeslinnu võsapõlengud, milles hukkus neli ja sai vigastada 435 inimest. | On 18 January 2003, several of the suburbs of Canberra were seized by debt fires which killed four people and injured 435 people. | 0.8666666150093079 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_ne_en * Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|:---------------------------------| | सामान्‍य बजट प्रायः फेब्रुअरीका अंतिम कार्य दिवसमा लाईन्छ। | A normal budget is usually awarded to the digital working day of February. | 0.5600000023841858 | | कविताका यस्ता स्वरूपमा दुई, तिन वा चार पाउसम्मका मुक्तक, हाइकु, सायरी र लोकसूक्तिहरू पर्दछन् । | The book consists of two, free of her or four paulets, haiku, Sairi, and locus in such forms. | 0.23666666448116302 | | ब्रिट्नीले यस बारेमा प्रतिक्रिया ब्यक्ता गरदै भनिन,"कुन ठूलो कुरा हो र? | Britney did not respond to this, saying "which is a big thing and a big thing? | 0.21666665375232697 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_ro_en * Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:---------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | Orașul va fi împărțit în patru districte, iar suburbiile în 10 mahalale. | The city will be divided into four districts and suburbs into 10 mahalals. | 0.4699999988079071 | | La scurt timp după aceasta, au devenit cunoscute debarcările germane de la Trondheim, Bergen și Stavanger, precum și luptele din Oslofjord. | In the light of the above, the Authority concludes that the aid granted to ADIF is compatible with the internal market pursuant to Article 61 (3) (c) of the EEA Agreement. | 0.02666666731238365 | | Până în vara 1791, în Clubul iacobinilor au dominat reprezentanții monarhismului liberal constituțional. | Until the summer of 1791, representatives of liberal constitutional monarchism dominated in the Jacobins Club. | 0.8733333349227905 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_si_en * Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 7,000 training samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------| | ඇපලෝ 4 සැටර්න් V බූස්ටරයේ ප්‍රථම පර්යේෂණ පියාසැරිය විය. | The first research flight of the Apollo 4 Saturn V Booster. | 0.7966666221618652 | | මෙහි අවපාතය සැලකීමේ දී, මෙහි 48%ක අවරෝහණය $ මිලියන 125කට අධික චිත්‍රපටයක් ලද තෙවන කුඩාම අවපාතය වේ. | In conjunction with the depression here, 48 % of obesity here is the third smallest depression in over $ 125 million film. | 0.17666666209697723 | | එසේම "බකමූණන් මගින් මෙම රාක්ෂසියගේ රාත්‍රී හැසිරීම සංකේතවත් වන බව" පවසයි. | Also "the owl says that this monster's night behavior is symbolic". | 0.8799999952316284 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Datasets #### wmt_da * Dataset: [wmt_da](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation) at [301de38](https://huggingface.co/datasets/RicardoRei/wmt-da-human-evaluation/tree/301de385bf05b0c00a8f4be74965e186164dd425) * Size: 1,285,190 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------| | After playing classic 1982 track Eminence Front, Daltrey called it quits. he has struggled with vocal issues and apparently is under strict instructions from his surgeon. | Nachdem er 1982 den klassischen Track Eminence Front gespielt hatte, nannte Daltrey es beendet. Er hat mit Stimmproblemen zu kämpfen und steht offenbar unter strengen Anweisungen seines Chirurgen. | 0.715 | | જ્યારે કોંગ્રેસે આ બાબતનો વિરોધ કર્યો છે. | While Congress has resisted the matter. | 0.77 | | Police are currently investigating a series of antisemitic comments posted on the Grime artist's social media accounts. | 警方目前正在调查在这位污垢艺术家的社交媒体账户上发布的一系列反犹评论。 | 0.66 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_en_de * Dataset: [mlqe_en_de](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------| | Resuming her patrols, Constitution managed to recapture the American sloop Neutrality on 27 March and, a few days later, the French ship Carteret. | Mit der Wiederaufnahme ihrer Patrouillen gelang es der Verfassung, am 27. März die amerikanische Schleuderneutralität und wenige Tage später das französische Schiff Carteret zurückzuerobern. | 0.9033333659172058 | | Blaine's nomination alienated many Republicans who viewed Blaine as ambitious and immoral. | Blaines Nominierung entfremdete viele Republikaner, die Blaine als ehrgeizig und unmoralisch betrachteten. | 0.9216666221618652 | | This initiated a brief correspondence between the two which quickly descended into political rancor. | Dies leitete eine kurze Korrespondenz zwischen den beiden ein, die schnell zu politischem Groll abstieg. | 0.878333330154419 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_en_zh * Dataset: [mlqe_en_zh](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:---------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------|:--------------------------------| | Freeman briefly stayed with the king before returning to Accra via Whydah, Ahgwey and Little Popo. | 弗里曼在经过惠达、阿格威和小波波回到阿克拉之前与国王一起住了一会儿。 | 0.6683333516120911 | | Fantastic Fiction "Scratches in the Sky, Ben Peek, Agog! | 奇特的虚构 "天空中的碎片 , 本佩克 , 阿戈 ! | 0.71833336353302 | | For Hermann Keller, the running quavers and semiquavers "suffuse the setting with health and strength." | 对赫尔曼 · 凯勒来说 , 跑步的跳跃者和半跳跃者 "让环境充满健康和力量" 。 | 0.7066666483879089 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_et_en * Dataset: [mlqe_et_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------|:---------------------------------| | Jackson pidas seal kõne, öeldes, et James Brown on tema suurim inspiratsioon. | Jackson gave a speech there saying that James Brown is his greatest inspiration. | 0.9833333492279053 | | Kaanelugu rääkis loo kolme ungarlase üleelamistest Ungari revolutsiooni päevil. | The life of the Man spoke of a story of three Hungarians living in the days of the Hungarian Revolution. | 0.28999999165534973 | | Teise maailmasõja ajal oli ta mitme Saksa juhatusele alluvate eesti väeosa ülem. | During World War II, he was the commander of several of the German leadership. | 0.4516666829586029 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_ne_en * Dataset: [mlqe_ne_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------|:---------------------------------| | १८९२ तिर भवानीदत्त पाण्डेले 'मुद्रा राक्षस'को अनुवाद गरे। | Around 1892, Bhavani Pandit translated the 'money monster'. | 0.8416666388511658 | | यस बच्चाको मुखले आमाको स्तन यस बच्चाको मुखले आमाको स्तन राम्ररी च्यापेको छ । | The breasts of this child's mouth are taped well with the mother's mouth. | 0.2150000035762787 | | बुवाको बन्दुक चोरेर हिँडेका बराललाई केआई सिंहले अब गोली ल्याउन लगाए ।... | Kei Singh, who stole the boy's closet, took the bullet to bring it now.. | 0.27000001072883606 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_ro_en * Dataset: [mlqe_ro_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------| | Cornwallis se afla înconjurat pe uscat de forțe armate net superioare și retragerea pe mare era îndoielnică din cauza flotei franceze. | Cornwallis was surrounded by shore by higher armed forces and the sea withdrawal was doubtful due to the French fleet. | 0.8199999928474426 | | thumbrightuprightDansatori [[cretani de muzică tradițională. | Number of employees employed in the production of the like product in the Union. | 0.009999999776482582 | | Potrivit documentelor vremii și tradiției orale, aceasta a fost cea mai grea perioadă din istoria orașului. | According to the documents of the oral weather and tradition, this was the hardest period in the city's history. | 0.5383332967758179 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` #### mlqe_si_en * Dataset: [mlqe_si_en](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1) at [0783ed2](https://huggingface.co/datasets/wmt/wmt20_mlqe_task1/tree/0783ed2bd75f44835df4ea664f9ccb85812c8563) * Size: 1,000 evaluation samples * Columns: sentence1, sentence2, and score * Approximate statistics based on the first 1000 samples: | | sentence1 | sentence2 | score | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence1 | sentence2 | score | |:----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|:--------------------------------| | එයට ශි්‍ර ලංකාවේ සාමය ඇති කිරිමටත් නැති කිරිමටත් පුළුවන්. | It can also cause peace in Sri Lanka. | 0.3199999928474426 | | ඔහු මනෝ විද්‍යාව, සමාජ විද්‍යාව, ඉතිහාසය හා සන්නිවේදනය යන විෂය ක්ෂේත්‍රයන් පිලිබදවද අධ්‍යයනයන් සිදු කිරීමට උත්සාහ කරන ලදි. | He attempted to do subjects in psychology, sociology, history and communication. | 0.5366666913032532 | | එහෙත් කිසිදු මිනිසෙක්‌ හෝ ගැහැනියෙක්‌ එලිමහනක නොවූහ. | But no man or woman was eliminated. | 0.2783333361148834 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 2 - `warmup_ratio`: 0.1 #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | wmt da loss | mlqe en de loss | mlqe en zh loss | mlqe et en loss | mlqe ne en loss | mlqe ro en loss | mlqe si en loss | sts-eval_spearman_cosine | sts-test_spearman_cosine | |:-----:|:-----:|:-------------:|:-----------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:------------------------:|:------------------------:| | 0.4 | 6690 | 7.7892 | 7.5592 | 7.5700 | 7.5692 | 7.5217 | 7.5369 | 7.4978 | 7.5494 | 0.2536 | - | | 0.8 | 13380 | 7.5513 | 7.5470 | 7.5928 | 7.5812 | 7.5179 | 7.5207 | 7.4936 | 7.5463 | 0.2642 | - | | 1.2 | 20070 | 7.5222 | 7.5460 | 7.6197 | 7.5972 | 7.5218 | 7.5496 | 7.5025 | 7.5633 | 0.2449 | - | | 1.6 | 26760 | 7.5019 | 7.5361 | 7.6332 | 7.5854 | 7.5226 | 7.5264 | 7.4937 | 7.5654 | 0.2559 | - | | 2.0 | 33450 | 7.4944 | 7.5285 | 7.6266 | 7.5859 | 7.5202 | 7.5183 | 7.4898 | 7.5460 | 0.2688 | 0.2676 | ### Framework Versions - Python: 3.11.10 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.3.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```