|
import gradio as gr |
|
import argparse, torch, os |
|
from PIL import Image |
|
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline |
|
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref |
|
from src.unet_hacked_tryon import UNet2DConditionModel |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPVisionModelWithProjection, |
|
) |
|
from diffusers import AutoencoderKL |
|
from typing import List |
|
from util.common import open_folder |
|
from util.image import pil_to_binary_mask, save_output_image |
|
from utils_mask import get_mask_location |
|
from torchvision import transforms |
|
import apply_net |
|
from preprocess.humanparsing.run_parsing import Parsing |
|
from preprocess.openpose.run_openpose import OpenPose |
|
from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation |
|
from torchvision.transforms.functional import to_pil_image |
|
from util.pipeline import quantize_4bit, restart_cpu_offload, torch_gc |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", type=str, default=False, help="Set to True to share the app publicly.") |
|
parser.add_argument("--lowvram", action="store_true", help="Enable CPU offload for model operations.") |
|
parser.add_argument("--load_mode", default=None, type=str, choices=["4bit", "8bit"], help="Quantization mode for optimization memory consumption") |
|
parser.add_argument("--fixed_vae", action="store_true", default=True, help="Use fixed vae for FP16.") |
|
args = parser.parse_args() |
|
|
|
load_mode = args.load_mode |
|
fixed_vae = args.fixed_vae |
|
|
|
dtype = torch.float16 |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model_id = 'yisol/IDM-VTON' |
|
vae_model_id = 'madebyollin/sdxl-vae-fp16-fix' |
|
|
|
dtypeQuantize = dtype |
|
|
|
if(load_mode in ('4bit','8bit')): |
|
dtypeQuantize = torch.float8_e4m3fn |
|
|
|
ENABLE_CPU_OFFLOAD = args.lowvram |
|
torch.backends.cudnn.allow_tf32 = False |
|
torch.backends.cuda.allow_tf32 = False |
|
need_restart_cpu_offloading = False |
|
|
|
unet = None |
|
pipe = None |
|
UNet_Encoder = None |
|
example_path = os.path.join(os.path.dirname(__file__), 'example') |
|
|
|
def start_tryon(dict, garm_img, garment_des, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images): |
|
global pipe, unet, UNet_Encoder, need_restart_cpu_offloading |
|
|
|
if pipe == None: |
|
unet = UNet2DConditionModel.from_pretrained( |
|
model_id, |
|
subfolder="unet", |
|
torch_dtype=dtypeQuantize, |
|
) |
|
if load_mode == '4bit': |
|
quantize_4bit(unet) |
|
|
|
unet.requires_grad_(False) |
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
model_id, |
|
subfolder="image_encoder", |
|
torch_dtype=torch.float16, |
|
) |
|
if load_mode == '4bit': |
|
quantize_4bit(image_encoder) |
|
|
|
if fixed_vae: |
|
vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=dtype) |
|
else: |
|
vae = AutoencoderKL.from_pretrained(model_id, |
|
subfolder="vae", |
|
torch_dtype=dtype, |
|
) |
|
|
|
|
|
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( |
|
model_id, |
|
subfolder="unet_encoder", |
|
torch_dtype=dtypeQuantize, |
|
) |
|
|
|
if load_mode == '4bit': |
|
quantize_4bit(UNet_Encoder) |
|
|
|
UNet_Encoder.requires_grad_(False) |
|
image_encoder.requires_grad_(False) |
|
vae.requires_grad_(False) |
|
unet.requires_grad_(False) |
|
|
|
pipe_param = { |
|
'pretrained_model_name_or_path': model_id, |
|
'unet': unet, |
|
'torch_dtype': dtype, |
|
'vae': vae, |
|
'image_encoder': image_encoder, |
|
'feature_extractor': CLIPImageProcessor(), |
|
} |
|
|
|
pipe = TryonPipeline.from_pretrained(**pipe_param).to(device) |
|
pipe.unet_encoder = UNet_Encoder |
|
pipe.unet_encoder.to(pipe.unet.device) |
|
|
|
if load_mode == '4bit': |
|
if pipe.text_encoder is not None: |
|
quantize_4bit(pipe.text_encoder) |
|
if pipe.text_encoder_2 is not None: |
|
quantize_4bit(pipe.text_encoder_2) |
|
|
|
else: |
|
if ENABLE_CPU_OFFLOAD: |
|
need_restart_cpu_offloading =True |
|
|
|
torch_gc() |
|
parsing_model = Parsing(0) |
|
openpose_model = OpenPose(0) |
|
openpose_model.preprocessor.body_estimation.model.to(device) |
|
tensor_transfrom = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
if need_restart_cpu_offloading: |
|
restart_cpu_offload(pipe, load_mode) |
|
elif ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
|
|
|
|
garm_img= garm_img.convert("RGB").resize((768,1024)) |
|
human_img_orig = dict["background"].convert("RGB") |
|
|
|
if is_checked_crop: |
|
width, height = human_img_orig.size |
|
target_width = int(min(width, height * (3 / 4))) |
|
target_height = int(min(height, width * (4 / 3))) |
|
left = (width - target_width) / 2 |
|
top = (height - target_height) / 2 |
|
right = (width + target_width) / 2 |
|
bottom = (height + target_height) / 2 |
|
cropped_img = human_img_orig.crop((left, top, right, bottom)) |
|
crop_size = cropped_img.size |
|
human_img = cropped_img.resize((768,1024)) |
|
else: |
|
human_img = human_img_orig.resize((768,1024)) |
|
|
|
if is_checked: |
|
keypoints = openpose_model(human_img.resize((384,512))) |
|
model_parse, _ = parsing_model(human_img.resize((384,512))) |
|
mask, mask_gray = get_mask_location('hd', category, model_parse, keypoints) |
|
mask = mask.resize((768,1024)) |
|
else: |
|
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024))) |
|
|
|
|
|
|
|
mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img) |
|
mask_gray = to_pil_image((mask_gray+1.0)/2.0) |
|
|
|
human_img_arg = _apply_exif_orientation(human_img.resize((384,512))) |
|
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR") |
|
|
|
args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')) |
|
|
|
pose_img = args.func(args,human_img_arg) |
|
pose_img = pose_img[:,:,::-1] |
|
pose_img = Image.fromarray(pose_img).resize((768,1024)) |
|
|
|
if pipe.text_encoder is not None: |
|
pipe.text_encoder.to(device) |
|
|
|
if pipe.text_encoder_2 is not None: |
|
pipe.text_encoder_2.to(device) |
|
|
|
with torch.no_grad(): |
|
|
|
with torch.cuda.amp.autocast(dtype=dtype): |
|
with torch.no_grad(): |
|
prompt = "model is wearing " + garment_des |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
prompt = "a photo of " + garment_des |
|
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" |
|
if not isinstance(prompt, List): |
|
prompt = [prompt] * 1 |
|
if not isinstance(negative_prompt, List): |
|
negative_prompt = [negative_prompt] * 1 |
|
with torch.inference_mode(): |
|
( |
|
prompt_embeds_c, |
|
_, |
|
_, |
|
_, |
|
) = pipe.encode_prompt( |
|
prompt, |
|
num_images_per_prompt=1, |
|
do_classifier_free_guidance=False, |
|
negative_prompt=negative_prompt, |
|
) |
|
|
|
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,dtype) |
|
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,dtype) |
|
results = [] |
|
current_seed = seed |
|
for i in range(number_of_images): |
|
if is_randomize_seed: |
|
current_seed = torch.randint(0, 2**32, size=(1,)).item() |
|
generator = torch.Generator(device).manual_seed(current_seed) if seed != -1 else None |
|
current_seed = current_seed + i |
|
|
|
images = pipe( |
|
prompt_embeds=prompt_embeds.to(device,dtype), |
|
negative_prompt_embeds=negative_prompt_embeds.to(device,dtype), |
|
pooled_prompt_embeds=pooled_prompt_embeds.to(device,dtype), |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,dtype), |
|
num_inference_steps=denoise_steps, |
|
generator=generator, |
|
strength = 1.0, |
|
pose_img = pose_img.to(device,dtype), |
|
text_embeds_cloth=prompt_embeds_c.to(device,dtype), |
|
cloth = garm_tensor.to(device,dtype), |
|
mask_image=mask, |
|
image=human_img, |
|
height=1024, |
|
width=768, |
|
ip_adapter_image = garm_img.resize((768,1024)), |
|
guidance_scale=2.0, |
|
dtype=dtype, |
|
device=device, |
|
)[0] |
|
if is_checked_crop: |
|
out_img = images[0].resize(crop_size) |
|
human_img_orig.paste(out_img, (int(left), int(top))) |
|
img_path = save_output_image(human_img_orig, base_path="outputs", base_filename='img', seed=current_seed) |
|
results.append(img_path) |
|
else: |
|
img_path = save_output_image(images[0], base_path="outputs", base_filename='img') |
|
results.append(img_path) |
|
return results, mask_gray |
|
|
|
garm_list = os.listdir(os.path.join(example_path,"cloth")) |
|
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list] |
|
|
|
human_list = os.listdir(os.path.join(example_path,"human")) |
|
human_list_path = [os.path.join(example_path,"human",human) for human in human_list] |
|
|
|
human_ex_list = [] |
|
for ex_human in human_list_path: |
|
if "Jensen" in ex_human or "sam1 (1)" in ex_human: |
|
ex_dict = {} |
|
ex_dict['background'] = ex_human |
|
ex_dict['layers'] = None |
|
ex_dict['composite'] = None |
|
human_ex_list.append(ex_dict) |
|
|
|
image_blocks = gr.Blocks().queue() |
|
with image_blocks as demo: |
|
gr.Markdown("## V7 - IDM-VTON πππ improved by SECourses and DEVAIEXP: 1-Click Installers Latest Version On : https://www.patreon.com/posts/103022942") |
|
gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)") |
|
with gr.Row(): |
|
with gr.Column(): |
|
imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True) |
|
with gr.Row(): |
|
category = gr.Radio(choices=["upper_body", "lower_body", "dresses"], label="Select Garment Category", value="upper_body") |
|
is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True) |
|
with gr.Row(): |
|
is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=True) |
|
|
|
example = gr.Examples( |
|
inputs=imgs, |
|
examples_per_page=2, |
|
examples=human_ex_list |
|
) |
|
|
|
with gr.Column(): |
|
garm_img = gr.Image(label="Garment", sources='upload', type="pil") |
|
with gr.Row(elem_id="prompt-container"): |
|
with gr.Row(): |
|
prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt") |
|
example = gr.Examples( |
|
inputs=garm_img, |
|
examples_per_page=8, |
|
examples=garm_list_path) |
|
with gr.Column(): |
|
with gr.Row(): |
|
|
|
masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False) |
|
with gr.Row(): |
|
btn_open_outputs = gr.Button("Open Outputs Folder") |
|
btn_open_outputs.click(fn=open_folder) |
|
with gr.Column(): |
|
with gr.Row(): |
|
|
|
image_gallery = gr.Gallery(label="Generated Images", show_label=True) |
|
with gr.Row(): |
|
try_button = gr.Button(value="Try-on") |
|
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=120, value=30, step=1) |
|
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=1) |
|
is_randomize_seed = gr.Checkbox(label="Randomize seed for each generated image", value=True) |
|
number_of_images = gr.Number(label="Number Of Images To Generate (it will start from your input seed and increment by 1)", minimum=1, maximum=9999, value=1, step=1) |
|
|
|
|
|
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, category, is_checked, is_checked_crop, denoise_steps, is_randomize_seed, seed, number_of_images], outputs=[image_gallery, masked_img],api_name='tryon') |
|
|
|
image_blocks.launch(inbrowser=True,share=args.share) |
|
|