Rubyando59 commited on
Commit
6ee389e
·
verified ·
1 Parent(s): b100ca0

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets: []
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy@1
9
+ - cosine_accuracy@3
10
+ - cosine_accuracy@5
11
+ - cosine_accuracy@10
12
+ - cosine_precision@1
13
+ - cosine_precision@3
14
+ - cosine_precision@5
15
+ - cosine_precision@10
16
+ - cosine_recall@1
17
+ - cosine_recall@3
18
+ - cosine_recall@5
19
+ - cosine_recall@10
20
+ - cosine_ndcg@10
21
+ - cosine_mrr@10
22
+ - cosine_map@100
23
+ pipeline_tag: sentence-similarity
24
+ tags:
25
+ - sentence-transformers
26
+ - sentence-similarity
27
+ - feature-extraction
28
+ - generated_from_trainer
29
+ - dataset_size:99145
30
+ - loss:MatryoshkaLoss
31
+ - loss:MultipleNegativesRankingLoss
32
+ widget:
33
+ - source_sentence: "YouTube provides people with entertainment, information, and opportunities\
34
+ \ to learn something new. Google Assistant \noffers the best way to get things\
35
+ \ done seamlessly across different devices, providing intelligent help throughout\
36
+ \ a \nperson's day, no matter where they are. Google Cloud helps customers solve\
37
+ \ today’s business challenges, improve \nproductivity, reduce costs, and unlock\
38
+ \ new growth engines. We are continually innovating and building new products\
39
+ \ \nand features that will help our users, partners, customers, and communities\
40
+ \ and have invested more than $150 billion \nin research and development in the\
41
+ \ last five years in support of these efforts .\nMaking AI H elpful for Everyone\n\
42
+ AI is a transformational technology that can bring meaningful and positive change\
43
+ \ to people and societies across \nthe world, and for our business. At Google,\
44
+ \ we have been bringing AI into our products and services for more than a \ndecade\
45
+ \ and making them available to our users. Our journey began in 2001, when machine\
46
+ \ learning was first \nincorporated into Google Search to suggest better spellings\
47
+ \ to users searching the web. Today, AI in our products is Table of Contents Alphabet\
48
+ \ Inc.\n4."
49
+ sentences:
50
+ - In what ways does Alphabet support the financial health of its employees?
51
+ - Analyze the potential impact of AI-driven tools on Google’s operational costs
52
+ and overall financial health.
53
+ - What strategies can companies implement to mitigate the financial risks associated
54
+ with problematic content?
55
+ - source_sentence: "Executive Overview\nThe following table summarizes our consolidated\
56
+ \ financial results (in millions, except for per share information \nand percentages):\n\
57
+ Year Ended December 31,\n2022 2023 $ Change % Change\nConsolidated revenues $\
58
+ \ 282,836 $ 307,394 $ 24,558 9 %\nChange in consolidated constant currency revenues(1)\
59
+ \ 10 %\nCost of revenues $ 126,203 $ 133,332 $ 7,129 6 %\nOperating expenses\
60
+ \ $ 81,791 $ 89,769 $ 7,978 10 %\nOperating income $ 74,842 $ 84,293 $ 9,451\
61
+ \ 13 %\nOperating margin 26 % 27 % 1 %\nOther income (expense), net $ (3,514)\
62
+ \ $ 1,424 $ 4,938 NM\nNet income $ 59,972 $ 73,795 $ 13,823 23 %\nDiluted EPS\
63
+ \ $ 4.56 $ 5.80 $ 1.24 27 %\nNM = Not Meaningful\n(1) See \"Use of Non-GAAP Constant\
64
+ \ Currency Information \" below for details relating to our use of constant currency\
65
+ \ information. \n•Revenues were $307.4 billion , an increase of 9% year over\
66
+ \ year, primarily driven by an increase in Google \nServices revenues of $19.0\
67
+ \ billion , or 8%, and an increase in Google Cloud revenues of $6.8 billion ,\
68
+ \ or 26%. \n•Total constant currency revenues, which exclude the effect of hedging,\
69
+ \ increased 10% year over year.\n•Cost of revenues was $133.3 billion , an increase\
70
+ \ of 6% year over year, primarily driven by increase s in content \nacquisition\
71
+ \ costs , compensation expenses, and TAC . The increase in compensation expenses\
72
+ \ included \ncharges related to employee severance associated with the reduction\
73
+ \ in our workforce . Additionally, cost of \nrevenues benefited from a reduction\
74
+ \ in depreciation due to the change in estimated useful lives of our servers \n\
75
+ and network equipment.\n•Operating expenses were $89.8 billion , an increase \
76
+ \ of 10% year over year , primarily driven by an increase in \ncompensation expenses\
77
+ \ and charges related to our office space optimization efforts . The increase\
78
+ \ in \ncompensation expenses was largely the result of charges related to employee\
79
+ \ severance associated with the \nreduction in our workforce and an increase\
80
+ \ in SBC expense. Operating expenses benefited from the change in \nthe estimated\
81
+ \ useful lives of our servers and certain network equipment.\nOther Information:\n\
82
+ •In January 2023, we announced a reduction of our workforce , and as a result\
83
+ \ we recorded employee \nseverance and related charges of $2.1 billion for the\
84
+ \ year ended December 31, 2023. In addition, we are \ntaking actions to optimize\
85
+ \ our global office space. As a result, exit charges recorded during the year\
86
+ \ ended \nDecember 31, 2023, were $1.8 billion . In addition to these exit charges,\
87
+ \ for the year ended December 31, \n2023, we incurred $269 million in accelerated\
88
+ \ rent and accelerated depreciation . For additional information, \nsee Note 8\
89
+ \ of the Notes to Consolidated Financial Statements included in Item 8 of this\
90
+ \ Annual Report on \nForm 10-K.\n•In January 2023, we completed an assessment\
91
+ \ of the useful lives of our servers and network equipment, \nresulting in a change\
92
+ \ in the estimated useful life of our servers and certain network equipment to\
93
+ \ six years. \nThe effect of this change was a reduction in depreciation expense\
94
+ \ of $3.9 billion for the year ended December \n31, 2023, recognized primarily\
95
+ \ in cost of revenues and R&D expenses. For additional information, see Note 1\
96
+ \ \nof the Notes to Consolidated Financial Statements included in Item 8 of this\
97
+ \ Annual Report on Form 10-K.Table of Contents Alphabet Inc.\n34."
98
+ sentences:
99
+ - How does Google’s investment in AI research align with its long-term financial
100
+ strategy and goals?
101
+ - What role do market and industry factors play in the fluctuation of stock prices,
102
+ regardless of a company's performance?
103
+ - What was the total consolidated revenue for the year ended December 31, 2023,
104
+ and how does it compare to the previous year?
105
+ - source_sentence: "Furthermore, failure to maintain and enhance our brands could\
106
+ \ harm our business, reputation, financial condition, \nand operating results.\
107
+ \ Our success will depend largely on our ability to remain a technology leader\
108
+ \ and continue to \nprovide high-quality, trustworthy, innovative products and\
109
+ \ services that are truly useful and play a valuable role in a \nrange of settings.\
110
+ \ \nWe face a number of manufacturing and supply chain risks that could harm our\
111
+ \ business, financial \ncondition, and operating results. \nWe face a number of\
112
+ \ risks related to manufacturing and supply chain management, which could affect\
113
+ \ our ability \nto supply both our products and our services. \nWe rely on contract\
114
+ \ manufacturers to manufacture or assemble our device s and servers and networking\
115
+ \ \nequipment used in our technical infrastructure, and we may supply the contract\
116
+ \ manufacturers with components to \nassemble t he device s and equipment. We\
117
+ \ also rely on other companies to participate in the supply of components and\
118
+ \ \ndistribution of our products and services. Our business could be negatively\
119
+ \ affected if we are not able to engage these \ncompanies with the necessary capabilities\
120
+ \ or capacity on reasonable terms, or if those we engage fail to meet their Table\
121
+ \ of Contents Alphabet Inc.\n13."
122
+ sentences:
123
+ - Discuss the impact of annual stock-based compensation (SBC) awards on Alphabet
124
+ Inc.'s financial reporting.
125
+ - What financial risks does Google face if it fails to comply with the General Data
126
+ Protection Regulation (GDPR)?
127
+ - How does the ability to provide innovative products and services correlate with
128
+ a company's revenue growth?
129
+ - source_sentence: "For example, in December 2023, a California jury delivered a verdict\
130
+ \ in Epic Games v. Google finding that Google \nviolated antitrust laws related\
131
+ \ to Google Play's billing practices. The presiding judge will determine remedies\
132
+ \ in 2024 \nand the range of potential remedies vary widely. We plan to appeal.\
133
+ \ In addition, the U.S. Department of Justice, \nvarious U.S. states, and other\
134
+ \ plaintiffs have filed several antitrust lawsuits about various aspects of our\
135
+ \ business, \nincluding our advertising technologies and practices, the operation\
136
+ \ and distribution of Google Search, and the \noperation and distribution of the\
137
+ \ Android operating system and Play Store. Other regulatory agencies in the U.S.\
138
+ \ and \naround the world, including competition enforcers, consumer protection\
139
+ \ agencies, and data protection authorities, have \nchallenged and may continue\
140
+ \ to challenge our business practices and compliance with laws and regulations.\
141
+ \ We are \ncooperating with these investigations and defending litigation or\
142
+ \ appealing decisions where appropriate. \nVarious laws, regulations, investigations,\
143
+ \ enforcement lawsuits, and regulatory actions have involved in the past , \n\
144
+ and may in the future result in substantial fines and penalties, injunctive relief,\
145
+ \ ongoing monitoring and auditing \nobligations, changes to our products and services,\
146
+ \ alterations to our business models and operations , including \ndivestiture\
147
+ \ , and collateral related civil litigation or other adverse consequences, all\
148
+ \ of which could harm our business, \nreputation, financial condition, and operating\
149
+ \ results. \nAny of these legal proceedings could result in legal costs, diversion\
150
+ \ of management resources, negative publicity \nand other harms to our business.\
151
+ \ Estimating liabilities for our pending proceedings is a complex, fact-specific\
152
+ \ , and \nspeculative process that requires significant judgment, and the amounts\
153
+ \ we are ultimately liable for may be less than or \nexceed our estimates. The\
154
+ \ resolution of one or more such proceedings has resulted in, and may in the future\
155
+ \ result in, \nadditional substantial fines, penalties, injunctions, and other\
156
+ \ sanctions that could harm our business, reputation, \nfinancial condition, and\
157
+ \ operating results. \nFor additional information about the ongoing material legal\
158
+ \ proceedings to which we are subject, see Legal \nProceedings in Part I, Item\
159
+ \ 3 of this Annual Report on Form 10-K.\nPrivacy, data protection, and data usage\
160
+ \ regulations are complex and rapidly evolving areas. Any failure \nor alleged\
161
+ \ failure to comply with these laws could harm our business, reputation, financial\
162
+ \ condition, and \noperating results. \nAuthorities around the world have adopted\
163
+ \ and are considering a number of legislative and regulatory proposals \nconcerning\
164
+ \ data protection, data usage, and encryption of user data. Adverse legal rulings,\
165
+ \ legislation, or regulation \nhave resulted in, and may continue to result in,\
166
+ \ fines and orders requiring that we change our practices, which have \nhad and\
167
+ \ could continue to have an adverse effect on how we provide services, harming\
168
+ \ our business, reputation, \nfinancial condition, and operating results. These\
169
+ \ laws and regulations are evolving and subject to interpretation, and \ncompliance\
170
+ \ obligations could cause us to incur substantial costs or harm the quality and\
171
+ \ operations of our products \nand services in ways that harm our business. Examples\
172
+ \ of these laws include : \n•The General Data Protection Regulation and the United\
173
+ \ Kingdom General Data Protection Regulations, which \napply to all of our activities\
174
+ \ conducted from an establishment in the EU or the United Kingdom, respectively,\
175
+ \ or \nrelated to products and services that we offer to EU or the United Kingdom\
176
+ \ users or customers, respectively, or \nthe monitoring of their behavior in the\
177
+ \ EU or the UK, respectively.\n•Various comprehensive U.S. state and foreign privacy\
178
+ \ laws, which give new data privacy rights to their \nrespective residents (including,\
179
+ \ in California, a private right of action in the event of a data breach resulting\
180
+ \ \nfrom our failure to implement and maintain reasonable security procedures\
181
+ \ and practices) and impose \nsignificant obligations on controllers and processors\
182
+ \ of consumer data.\n•State laws governing the processing of biometric information,\
183
+ \ such as the Illinois Biometric Information Privacy \nAct and the Texas Capture\
184
+ \ or Use of Biometric Identifier Act, which impose obligations on businesses that\
185
+ \ \ncollect or disclose consumer biometric information. \n•Various federal, state,\
186
+ \ and foreign laws governing how companies provide age appropriate experiences\
187
+ \ to \nchildren and minors, including the collection and processing of children\
188
+ \ and minor’s data. These include the \nChildren’s Online Privacy Protection Act\
189
+ \ of 1998, and the United Kingdom Age-Appropriate Design Code, all of \nwhich\
190
+ \ address the use and disclosure of the personal data of children and minors and\
191
+ \ impose obligations on \nonline services or products directed to or likely to\
192
+ \ be accessed by children. \n•The California Internet of Things Security Law,\
193
+ \ which regulates the security of data used in connection with \ninternet-connected\
194
+ \ devices."
195
+ sentences:
196
+ - What are the ethical challenges that may arise from the development of new AI
197
+ products and services?
198
+ - How might the California Internet of Things Security Law impose additional financial
199
+ obligations on Google?
200
+ - In the context of Google Services, what factors contribute to the competitive
201
+ nature of the device market, and how might these factors affect financial outcomes?
202
+ - source_sentence: "obligations (whether due to financial difficulties or other reasons),\
203
+ \ or make adverse changes in the pricing or other \nmaterial terms of our arrangements\
204
+ \ with them. \nWe have experienced and/or may in the future experience supply\
205
+ \ shortages, price increases, quality issues, and/\nor longer lead times that\
206
+ \ could negatively affect our operations, driven by raw material, component availability,\
207
+ \ \nmanufacturing capacity, labor shortages, industry allocations, logistics capacity,\
208
+ \ inflation, foreign currency exchange \nrates, tariffs, sanctions and export\
209
+ \ controls, trade disputes and barriers, forced labor concerns, sustainability\
210
+ \ sourcing \nrequirements, geopolitical tensions, armed conflicts, natural disasters\
211
+ \ or pandemics, the effects of climate change \n(such as sea level rise, drought,\
212
+ \ flooding, heat waves, wildfires and resultant air quality effects and power\
213
+ \ shutdowns \nassociated with wildfire prevention, and increased storm severity),\
214
+ \ power loss, and significant changes in the financial \nor business condition\
215
+ \ of our suppliers. Some of the components we use in our technical infrastructure\
216
+ \ and our device s \nare available from only one or limited sources, and we may\
217
+ \ not be able to find replacement vendors on favorable terms \nin the event of\
218
+ \ a supply chain disruption. A significant supply interruption that affects us\
219
+ \ or our vendors could delay \ncritical data center upgrades or expansions and\
220
+ \ delay consumer product availability . \nWe may enter into long-term contracts\
221
+ \ for materials and products that commit us to significant terms and \nconditions.\
222
+ \ We may face costs for materials and products that are not consumed due to market\
223
+ \ demand, technological \nchange, changed consumer preferences, quality, product\
224
+ \ recalls, and warranty issues. For instance, because certain of \nour hardware\
225
+ \ supply contracts have volume-based pricing or minimum purchase requirements,\
226
+ \ if the volume of sales \nof our devices decreases or does not reach projected\
227
+ \ targets, we could face increased materials and manufacturing \ncosts or other\
228
+ \ financial liabilities that could make our products more costly per unit to manufacture\
229
+ \ and harm our \nfinancial condition and operating results. Furthermore, certain\
230
+ \ of our competitors may negotiate more favorable \ncontractual terms based on\
231
+ \ volume and other commitments that may provide them with competitive advantages\
232
+ \ and \nmay affect our supply. \nOur device s have had, and in the future may\
233
+ \ have, quality issues resulting from design, manufacturing, or \noperations.\
234
+ \ Sometimes, these issues may be caused by components we purchase from other manufacturers\
235
+ \ or \nsuppliers. If the quality of our products and services does not meet expectations\
236
+ \ or our products or services are \ndefective or require a recall, it could harm\
237
+ \ our reputation, financial condition, and operating results. \nWe require our\
238
+ \ suppliers and business partners to comply with laws and, where applicable, our\
239
+ \ company policies \nand practices, such as the Google Supplier Code of Conduct,\
240
+ \ regarding workplace and employment practices, data \nsecurity, environmental\
241
+ \ compliance, and intellectual property licensing, but we do not control them\
242
+ \ or their practices. \nViolations of law or unethical business practices could\
243
+ \ result in supply chain disruptions, canceled orders, harm to key \nrelationships,\
244
+ \ and damage to our reputation. Their failure to procure necessary license rights\
245
+ \ to intellectual property \ncould affect our ability to sell our products or\
246
+ \ services and expose us to litigation or financial claims. \nInterruption to,\
247
+ \ interference with, or failure of our complex information technology and communications\
248
+ \ \nsystems could hurt our ability to effectively provide our products and services,\
249
+ \ which could harm our \nreputation, financial condition, and operating results.\
250
+ \ \nThe availability of our products and services and fulfillment of our customer\
251
+ \ contracts depend on the continuing \noperation of our information technology\
252
+ \ and communications systems. Our systems are vulnerable to damage, \ninterference,\
253
+ \ or interruption from modifications or upgrades, terrorist attacks, state-sponsored\
254
+ \ attacks, natural disasters \nor pandemics, geopolitical tensions or armed conflicts,\
255
+ \ export controls and sanctions, the effects of climate change \n(such as sea\
256
+ \ level rise, drought, flooding, heat waves, wildfires and resultant air quality\
257
+ \ effects and power shutdowns \nassociated with wildfire prevention, and increased\
258
+ \ storm severity), power loss, utility outages, telecommunications \nfailures,\
259
+ \ computer viruses, software bugs, ransomware attacks, supply-chain attacks, computer\
260
+ \ denial of service \nattacks, phishing schemes, or other attempts to harm or\
261
+ \ access our systems. Some of our data centers are located in \nareas with a high\
262
+ \ risk of major earthquakes or other natural disasters. Our data centers are also\
263
+ \ subject to break-ins, \nsabotage, and intentional acts of vandalism, and, in\
264
+ \ some cases, to potential disruptions resulting from problems \nexperienced by\
265
+ \ facility operators or disruptions as a result of geopolitical tensions and conflicts\
266
+ \ happening in the area. \nSome of our systems are not fully redundant, and disaster\
267
+ \ recovery planning cannot account for all eventualities. The \noccurrence of\
268
+ \ a natural disaster or pandemic, closure of a facility, or other unanticipated\
269
+ \ problems affecting our data \ncenters could result in lengthy interruptions\
270
+ \ in our service."
271
+ sentences:
272
+ - What are the implications of increased logistics capacity costs on a company's
273
+ overall financial performance?
274
+ - What are the potential risks associated with the company's reliance on consumer
275
+ subscription-based products for revenue?
276
+ - How might legal proceedings and regulatory scrutiny affect a company's financial
277
+ condition and operating results?
278
+ model-index:
279
+ - name: SUJET AI bge-base Finance Matryoshka
280
+ results:
281
+ - task:
282
+ type: information-retrieval
283
+ name: Information Retrieval
284
+ dataset:
285
+ name: dim 768
286
+ type: dim_768
287
+ metrics:
288
+ - type: cosine_accuracy@1
289
+ value: 0.015384615384615385
290
+ name: Cosine Accuracy@1
291
+ - type: cosine_accuracy@3
292
+ value: 0.04657342657342657
293
+ name: Cosine Accuracy@3
294
+ - type: cosine_accuracy@5
295
+ value: 0.06993006993006994
296
+ name: Cosine Accuracy@5
297
+ - type: cosine_accuracy@10
298
+ value: 0.13076923076923078
299
+ name: Cosine Accuracy@10
300
+ - type: cosine_precision@1
301
+ value: 0.015384615384615385
302
+ name: Cosine Precision@1
303
+ - type: cosine_precision@3
304
+ value: 0.015524475524475523
305
+ name: Cosine Precision@3
306
+ - type: cosine_precision@5
307
+ value: 0.013986013986013986
308
+ name: Cosine Precision@5
309
+ - type: cosine_precision@10
310
+ value: 0.013076923076923076
311
+ name: Cosine Precision@10
312
+ - type: cosine_recall@1
313
+ value: 0.015384615384615385
314
+ name: Cosine Recall@1
315
+ - type: cosine_recall@3
316
+ value: 0.04657342657342657
317
+ name: Cosine Recall@3
318
+ - type: cosine_recall@5
319
+ value: 0.06993006993006994
320
+ name: Cosine Recall@5
321
+ - type: cosine_recall@10
322
+ value: 0.13076923076923078
323
+ name: Cosine Recall@10
324
+ - type: cosine_ndcg@10
325
+ value: 0.0620726064588503
326
+ name: Cosine Ndcg@10
327
+ - type: cosine_mrr@10
328
+ value: 0.04157842157842149
329
+ name: Cosine Mrr@10
330
+ - type: cosine_map@100
331
+ value: 0.05757497178689022
332
+ name: Cosine Map@100
333
+ - task:
334
+ type: information-retrieval
335
+ name: Information Retrieval
336
+ dataset:
337
+ name: dim 512
338
+ type: dim_512
339
+ metrics:
340
+ - type: cosine_accuracy@1
341
+ value: 0.014965034965034965
342
+ name: Cosine Accuracy@1
343
+ - type: cosine_accuracy@3
344
+ value: 0.04531468531468531
345
+ name: Cosine Accuracy@3
346
+ - type: cosine_accuracy@5
347
+ value: 0.06713286713286713
348
+ name: Cosine Accuracy@5
349
+ - type: cosine_accuracy@10
350
+ value: 0.12755244755244755
351
+ name: Cosine Accuracy@10
352
+ - type: cosine_precision@1
353
+ value: 0.014965034965034965
354
+ name: Cosine Precision@1
355
+ - type: cosine_precision@3
356
+ value: 0.015104895104895105
357
+ name: Cosine Precision@3
358
+ - type: cosine_precision@5
359
+ value: 0.013426573426573427
360
+ name: Cosine Precision@5
361
+ - type: cosine_precision@10
362
+ value: 0.012755244755244756
363
+ name: Cosine Precision@10
364
+ - type: cosine_recall@1
365
+ value: 0.014965034965034965
366
+ name: Cosine Recall@1
367
+ - type: cosine_recall@3
368
+ value: 0.04531468531468531
369
+ name: Cosine Recall@3
370
+ - type: cosine_recall@5
371
+ value: 0.06713286713286713
372
+ name: Cosine Recall@5
373
+ - type: cosine_recall@10
374
+ value: 0.12755244755244755
375
+ name: Cosine Recall@10
376
+ - type: cosine_ndcg@10
377
+ value: 0.06036389249600748
378
+ name: Cosine Ndcg@10
379
+ - type: cosine_mrr@10
380
+ value: 0.04032722832722825
381
+ name: Cosine Mrr@10
382
+ - type: cosine_map@100
383
+ value: 0.05606060146944153
384
+ name: Cosine Map@100
385
+ - task:
386
+ type: information-retrieval
387
+ name: Information Retrieval
388
+ dataset:
389
+ name: dim 256
390
+ type: dim_256
391
+ metrics:
392
+ - type: cosine_accuracy@1
393
+ value: 0.012167832167832168
394
+ name: Cosine Accuracy@1
395
+ - type: cosine_accuracy@3
396
+ value: 0.04055944055944056
397
+ name: Cosine Accuracy@3
398
+ - type: cosine_accuracy@5
399
+ value: 0.06265734265734266
400
+ name: Cosine Accuracy@5
401
+ - type: cosine_accuracy@10
402
+ value: 0.11734265734265734
403
+ name: Cosine Accuracy@10
404
+ - type: cosine_precision@1
405
+ value: 0.012167832167832168
406
+ name: Cosine Precision@1
407
+ - type: cosine_precision@3
408
+ value: 0.013519813519813519
409
+ name: Cosine Precision@3
410
+ - type: cosine_precision@5
411
+ value: 0.012531468531468533
412
+ name: Cosine Precision@5
413
+ - type: cosine_precision@10
414
+ value: 0.011734265734265736
415
+ name: Cosine Precision@10
416
+ - type: cosine_recall@1
417
+ value: 0.012167832167832168
418
+ name: Cosine Recall@1
419
+ - type: cosine_recall@3
420
+ value: 0.04055944055944056
421
+ name: Cosine Recall@3
422
+ - type: cosine_recall@5
423
+ value: 0.06265734265734266
424
+ name: Cosine Recall@5
425
+ - type: cosine_recall@10
426
+ value: 0.11734265734265734
427
+ name: Cosine Recall@10
428
+ - type: cosine_ndcg@10
429
+ value: 0.054805553416946595
430
+ name: Cosine Ndcg@10
431
+ - type: cosine_mrr@10
432
+ value: 0.03612859362859355
433
+ name: Cosine Mrr@10
434
+ - type: cosine_map@100
435
+ value: 0.050715277611358314
436
+ name: Cosine Map@100
437
+ - task:
438
+ type: information-retrieval
439
+ name: Information Retrieval
440
+ dataset:
441
+ name: dim 128
442
+ type: dim_128
443
+ metrics:
444
+ - type: cosine_accuracy@1
445
+ value: 0.01020979020979021
446
+ name: Cosine Accuracy@1
447
+ - type: cosine_accuracy@3
448
+ value: 0.03538461538461538
449
+ name: Cosine Accuracy@3
450
+ - type: cosine_accuracy@5
451
+ value: 0.05118881118881119
452
+ name: Cosine Accuracy@5
453
+ - type: cosine_accuracy@10
454
+ value: 0.09734265734265735
455
+ name: Cosine Accuracy@10
456
+ - type: cosine_precision@1
457
+ value: 0.01020979020979021
458
+ name: Cosine Precision@1
459
+ - type: cosine_precision@3
460
+ value: 0.011794871794871797
461
+ name: Cosine Precision@3
462
+ - type: cosine_precision@5
463
+ value: 0.01023776223776224
464
+ name: Cosine Precision@5
465
+ - type: cosine_precision@10
466
+ value: 0.009734265734265736
467
+ name: Cosine Precision@10
468
+ - type: cosine_recall@1
469
+ value: 0.01020979020979021
470
+ name: Cosine Recall@1
471
+ - type: cosine_recall@3
472
+ value: 0.03538461538461538
473
+ name: Cosine Recall@3
474
+ - type: cosine_recall@5
475
+ value: 0.05118881118881119
476
+ name: Cosine Recall@5
477
+ - type: cosine_recall@10
478
+ value: 0.09734265734265735
479
+ name: Cosine Recall@10
480
+ - type: cosine_ndcg@10
481
+ value: 0.045562900318375184
482
+ name: Cosine Ndcg@10
483
+ - type: cosine_mrr@10
484
+ value: 0.03009612609612603
485
+ name: Cosine Mrr@10
486
+ - type: cosine_map@100
487
+ value: 0.04272564391942989
488
+ name: Cosine Map@100
489
+ - task:
490
+ type: information-retrieval
491
+ name: Information Retrieval
492
+ dataset:
493
+ name: dim 64
494
+ type: dim_64
495
+ metrics:
496
+ - type: cosine_accuracy@1
497
+ value: 0.005874125874125874
498
+ name: Cosine Accuracy@1
499
+ - type: cosine_accuracy@3
500
+ value: 0.02125874125874126
501
+ name: Cosine Accuracy@3
502
+ - type: cosine_accuracy@5
503
+ value: 0.03370629370629371
504
+ name: Cosine Accuracy@5
505
+ - type: cosine_accuracy@10
506
+ value: 0.06741258741258742
507
+ name: Cosine Accuracy@10
508
+ - type: cosine_precision@1
509
+ value: 0.005874125874125874
510
+ name: Cosine Precision@1
511
+ - type: cosine_precision@3
512
+ value: 0.007086247086247086
513
+ name: Cosine Precision@3
514
+ - type: cosine_precision@5
515
+ value: 0.006741258741258742
516
+ name: Cosine Precision@5
517
+ - type: cosine_precision@10
518
+ value: 0.006741258741258742
519
+ name: Cosine Precision@10
520
+ - type: cosine_recall@1
521
+ value: 0.005874125874125874
522
+ name: Cosine Recall@1
523
+ - type: cosine_recall@3
524
+ value: 0.02125874125874126
525
+ name: Cosine Recall@3
526
+ - type: cosine_recall@5
527
+ value: 0.03370629370629371
528
+ name: Cosine Recall@5
529
+ - type: cosine_recall@10
530
+ value: 0.06741258741258742
531
+ name: Cosine Recall@10
532
+ - type: cosine_ndcg@10
533
+ value: 0.030435876859011154
534
+ name: Cosine Ndcg@10
535
+ - type: cosine_mrr@10
536
+ value: 0.01942596292596293
537
+ name: Cosine Mrr@10
538
+ - type: cosine_map@100
539
+ value: 0.028981824813925826
540
+ name: Cosine Map@100
541
+ ---
542
+
543
+ # SUJET AI bge-base Finance Matryoshka
544
+
545
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
546
+
547
+ ## Model Details
548
+
549
+ ### Model Description
550
+ - **Model Type:** Sentence Transformer
551
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
552
+ - **Maximum Sequence Length:** 512 tokens
553
+ - **Output Dimensionality:** 768 tokens
554
+ - **Similarity Function:** Cosine Similarity
555
+ <!-- - **Training Dataset:** Unknown -->
556
+ - **Language:** en
557
+ - **License:** apache-2.0
558
+
559
+ ### Model Sources
560
+
561
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
562
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
563
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
564
+
565
+ ### Full Model Architecture
566
+
567
+ ```
568
+ SentenceTransformer(
569
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
570
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
571
+ (2): Normalize()
572
+ )
573
+ ```
574
+
575
+ ## Usage
576
+
577
+ ### Direct Usage (Sentence Transformers)
578
+
579
+ First install the Sentence Transformers library:
580
+
581
+ ```bash
582
+ pip install -U sentence-transformers
583
+ ```
584
+
585
+ Then you can load this model and run inference.
586
+ ```python
587
+ from sentence_transformers import SentenceTransformer
588
+
589
+ # Download from the 🤗 Hub
590
+ model = SentenceTransformer("Rubyando59/bge-base-financial-matryoshka")
591
+ # Run inference
592
+ sentences = [
593
+ 'obligations (whether due to financial difficulties or other reasons), or make adverse changes in the pricing or other \nmaterial terms of our arrangements with them. \nWe have experienced and/or may in the future experience supply shortages, price increases, quality issues, and/\nor longer lead times that could negatively affect our operations, driven by raw material, component availability, \nmanufacturing capacity, labor shortages, industry allocations, logistics capacity, inflation, foreign currency exchange \nrates, tariffs, sanctions and export controls, trade disputes and barriers, forced labor concerns, sustainability sourcing \nrequirements, geopolitical tensions, armed conflicts, natural disasters or pandemics, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns \nassociated with wildfire prevention, and increased storm severity), power loss, and significant changes in the financial \nor business condition of our suppliers. Some of the components we use in our technical infrastructure and our device s \nare available from only one or limited sources, and we may not be able to find replacement vendors on favorable terms \nin the event of a supply chain disruption. A significant supply interruption that affects us or our vendors could delay \ncritical data center upgrades or expansions and delay consumer product availability . \nWe may enter into long-term contracts for materials and products that commit us to significant terms and \nconditions. We may face costs for materials and products that are not consumed due to market demand, technological \nchange, changed consumer preferences, quality, product recalls, and warranty issues. For instance, because certain of \nour hardware supply contracts have volume-based pricing or minimum purchase requirements, if the volume of sales \nof our devices decreases or does not reach projected targets, we could face increased materials and manufacturing \ncosts or other financial liabilities that could make our products more costly per unit to manufacture and harm our \nfinancial condition and operating results. Furthermore, certain of our competitors may negotiate more favorable \ncontractual terms based on volume and other commitments that may provide them with competitive advantages and \nmay affect our supply. \nOur device s have had, and in the future may have, quality issues resulting from design, manufacturing, or \noperations. Sometimes, these issues may be caused by components we purchase from other manufacturers or \nsuppliers. If the quality of our products and services does not meet expectations or our products or services are \ndefective or require a recall, it could harm our reputation, financial condition, and operating results. \nWe require our suppliers and business partners to comply with laws and, where applicable, our company policies \nand practices, such as the Google Supplier Code of Conduct, regarding workplace and employment practices, data \nsecurity, environmental compliance, and intellectual property licensing, but we do not control them or their practices. \nViolations of law or unethical business practices could result in supply chain disruptions, canceled orders, harm to key \nrelationships, and damage to our reputation. Their failure to procure necessary license rights to intellectual property \ncould affect our ability to sell our products or services and expose us to litigation or financial claims. \nInterruption to, interference with, or failure of our complex information technology and communications \nsystems could hurt our ability to effectively provide our products and services, which could harm our \nreputation, financial condition, and operating results. \nThe availability of our products and services and fulfillment of our customer contracts depend on the continuing \noperation of our information technology and communications systems. Our systems are vulnerable to damage, \ninterference, or interruption from modifications or upgrades, terrorist attacks, state-sponsored attacks, natural disasters \nor pandemics, geopolitical tensions or armed conflicts, export controls and sanctions, the effects of climate change \n(such as sea level rise, drought, flooding, heat waves, wildfires and resultant air quality effects and power shutdowns \nassociated with wildfire prevention, and increased storm severity), power loss, utility outages, telecommunications \nfailures, computer viruses, software bugs, ransomware attacks, supply-chain attacks, computer denial of service \nattacks, phishing schemes, or other attempts to harm or access our systems. Some of our data centers are located in \nareas with a high risk of major earthquakes or other natural disasters. Our data centers are also subject to break-ins, \nsabotage, and intentional acts of vandalism, and, in some cases, to potential disruptions resulting from problems \nexperienced by facility operators or disruptions as a result of geopolitical tensions and conflicts happening in the area. \nSome of our systems are not fully redundant, and disaster recovery planning cannot account for all eventualities. The \noccurrence of a natural disaster or pandemic, closure of a facility, or other unanticipated problems affecting our data \ncenters could result in lengthy interruptions in our service.',
594
+ "What are the implications of increased logistics capacity costs on a company's overall financial performance?",
595
+ "How might legal proceedings and regulatory scrutiny affect a company's financial condition and operating results?",
596
+ ]
597
+ embeddings = model.encode(sentences)
598
+ print(embeddings.shape)
599
+ # [3, 768]
600
+
601
+ # Get the similarity scores for the embeddings
602
+ similarities = model.similarity(embeddings, embeddings)
603
+ print(similarities.shape)
604
+ # [3, 3]
605
+ ```
606
+
607
+ <!--
608
+ ### Direct Usage (Transformers)
609
+
610
+ <details><summary>Click to see the direct usage in Transformers</summary>
611
+
612
+ </details>
613
+ -->
614
+
615
+ <!--
616
+ ### Downstream Usage (Sentence Transformers)
617
+
618
+ You can finetune this model on your own dataset.
619
+
620
+ <details><summary>Click to expand</summary>
621
+
622
+ </details>
623
+ -->
624
+
625
+ <!--
626
+ ### Out-of-Scope Use
627
+
628
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
629
+ -->
630
+
631
+ ## Evaluation
632
+
633
+ ### Metrics
634
+
635
+ #### Information Retrieval
636
+ * Dataset: `dim_768`
637
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
638
+
639
+ | Metric | Value |
640
+ |:--------------------|:-----------|
641
+ | cosine_accuracy@1 | 0.0154 |
642
+ | cosine_accuracy@3 | 0.0466 |
643
+ | cosine_accuracy@5 | 0.0699 |
644
+ | cosine_accuracy@10 | 0.1308 |
645
+ | cosine_precision@1 | 0.0154 |
646
+ | cosine_precision@3 | 0.0155 |
647
+ | cosine_precision@5 | 0.014 |
648
+ | cosine_precision@10 | 0.0131 |
649
+ | cosine_recall@1 | 0.0154 |
650
+ | cosine_recall@3 | 0.0466 |
651
+ | cosine_recall@5 | 0.0699 |
652
+ | cosine_recall@10 | 0.1308 |
653
+ | cosine_ndcg@10 | 0.0621 |
654
+ | cosine_mrr@10 | 0.0416 |
655
+ | **cosine_map@100** | **0.0576** |
656
+
657
+ #### Information Retrieval
658
+ * Dataset: `dim_512`
659
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
660
+
661
+ | Metric | Value |
662
+ |:--------------------|:-----------|
663
+ | cosine_accuracy@1 | 0.015 |
664
+ | cosine_accuracy@3 | 0.0453 |
665
+ | cosine_accuracy@5 | 0.0671 |
666
+ | cosine_accuracy@10 | 0.1276 |
667
+ | cosine_precision@1 | 0.015 |
668
+ | cosine_precision@3 | 0.0151 |
669
+ | cosine_precision@5 | 0.0134 |
670
+ | cosine_precision@10 | 0.0128 |
671
+ | cosine_recall@1 | 0.015 |
672
+ | cosine_recall@3 | 0.0453 |
673
+ | cosine_recall@5 | 0.0671 |
674
+ | cosine_recall@10 | 0.1276 |
675
+ | cosine_ndcg@10 | 0.0604 |
676
+ | cosine_mrr@10 | 0.0403 |
677
+ | **cosine_map@100** | **0.0561** |
678
+
679
+ #### Information Retrieval
680
+ * Dataset: `dim_256`
681
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
682
+
683
+ | Metric | Value |
684
+ |:--------------------|:-----------|
685
+ | cosine_accuracy@1 | 0.0122 |
686
+ | cosine_accuracy@3 | 0.0406 |
687
+ | cosine_accuracy@5 | 0.0627 |
688
+ | cosine_accuracy@10 | 0.1173 |
689
+ | cosine_precision@1 | 0.0122 |
690
+ | cosine_precision@3 | 0.0135 |
691
+ | cosine_precision@5 | 0.0125 |
692
+ | cosine_precision@10 | 0.0117 |
693
+ | cosine_recall@1 | 0.0122 |
694
+ | cosine_recall@3 | 0.0406 |
695
+ | cosine_recall@5 | 0.0627 |
696
+ | cosine_recall@10 | 0.1173 |
697
+ | cosine_ndcg@10 | 0.0548 |
698
+ | cosine_mrr@10 | 0.0361 |
699
+ | **cosine_map@100** | **0.0507** |
700
+
701
+ #### Information Retrieval
702
+ * Dataset: `dim_128`
703
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
704
+
705
+ | Metric | Value |
706
+ |:--------------------|:-----------|
707
+ | cosine_accuracy@1 | 0.0102 |
708
+ | cosine_accuracy@3 | 0.0354 |
709
+ | cosine_accuracy@5 | 0.0512 |
710
+ | cosine_accuracy@10 | 0.0973 |
711
+ | cosine_precision@1 | 0.0102 |
712
+ | cosine_precision@3 | 0.0118 |
713
+ | cosine_precision@5 | 0.0102 |
714
+ | cosine_precision@10 | 0.0097 |
715
+ | cosine_recall@1 | 0.0102 |
716
+ | cosine_recall@3 | 0.0354 |
717
+ | cosine_recall@5 | 0.0512 |
718
+ | cosine_recall@10 | 0.0973 |
719
+ | cosine_ndcg@10 | 0.0456 |
720
+ | cosine_mrr@10 | 0.0301 |
721
+ | **cosine_map@100** | **0.0427** |
722
+
723
+ #### Information Retrieval
724
+ * Dataset: `dim_64`
725
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
726
+
727
+ | Metric | Value |
728
+ |:--------------------|:----------|
729
+ | cosine_accuracy@1 | 0.0059 |
730
+ | cosine_accuracy@3 | 0.0213 |
731
+ | cosine_accuracy@5 | 0.0337 |
732
+ | cosine_accuracy@10 | 0.0674 |
733
+ | cosine_precision@1 | 0.0059 |
734
+ | cosine_precision@3 | 0.0071 |
735
+ | cosine_precision@5 | 0.0067 |
736
+ | cosine_precision@10 | 0.0067 |
737
+ | cosine_recall@1 | 0.0059 |
738
+ | cosine_recall@3 | 0.0213 |
739
+ | cosine_recall@5 | 0.0337 |
740
+ | cosine_recall@10 | 0.0674 |
741
+ | cosine_ndcg@10 | 0.0304 |
742
+ | cosine_mrr@10 | 0.0194 |
743
+ | **cosine_map@100** | **0.029** |
744
+
745
+ <!--
746
+ ## Bias, Risks and Limitations
747
+
748
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
749
+ -->
750
+
751
+ <!--
752
+ ### Recommendations
753
+
754
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
755
+ -->
756
+
757
+ ## Training Details
758
+
759
+ ### Training Hyperparameters
760
+ #### Non-Default Hyperparameters
761
+
762
+ - `eval_strategy`: epoch
763
+ - `per_device_train_batch_size`: 32
764
+ - `per_device_eval_batch_size`: 16
765
+ - `gradient_accumulation_steps`: 16
766
+ - `learning_rate`: 2e-05
767
+ - `num_train_epochs`: 10
768
+ - `lr_scheduler_type`: cosine
769
+ - `warmup_ratio`: 0.1
770
+ - `bf16`: True
771
+ - `tf32`: True
772
+ - `load_best_model_at_end`: True
773
+ - `optim`: adamw_torch_fused
774
+ - `batch_sampler`: no_duplicates
775
+
776
+ #### All Hyperparameters
777
+ <details><summary>Click to expand</summary>
778
+
779
+ - `overwrite_output_dir`: False
780
+ - `do_predict`: False
781
+ - `eval_strategy`: epoch
782
+ - `prediction_loss_only`: True
783
+ - `per_device_train_batch_size`: 32
784
+ - `per_device_eval_batch_size`: 16
785
+ - `per_gpu_train_batch_size`: None
786
+ - `per_gpu_eval_batch_size`: None
787
+ - `gradient_accumulation_steps`: 16
788
+ - `eval_accumulation_steps`: None
789
+ - `learning_rate`: 2e-05
790
+ - `weight_decay`: 0.0
791
+ - `adam_beta1`: 0.9
792
+ - `adam_beta2`: 0.999
793
+ - `adam_epsilon`: 1e-08
794
+ - `max_grad_norm`: 1.0
795
+ - `num_train_epochs`: 10
796
+ - `max_steps`: -1
797
+ - `lr_scheduler_type`: cosine
798
+ - `lr_scheduler_kwargs`: {}
799
+ - `warmup_ratio`: 0.1
800
+ - `warmup_steps`: 0
801
+ - `log_level`: passive
802
+ - `log_level_replica`: warning
803
+ - `log_on_each_node`: True
804
+ - `logging_nan_inf_filter`: True
805
+ - `save_safetensors`: True
806
+ - `save_on_each_node`: False
807
+ - `save_only_model`: False
808
+ - `restore_callback_states_from_checkpoint`: False
809
+ - `no_cuda`: False
810
+ - `use_cpu`: False
811
+ - `use_mps_device`: False
812
+ - `seed`: 42
813
+ - `data_seed`: None
814
+ - `jit_mode_eval`: False
815
+ - `use_ipex`: False
816
+ - `bf16`: True
817
+ - `fp16`: False
818
+ - `fp16_opt_level`: O1
819
+ - `half_precision_backend`: auto
820
+ - `bf16_full_eval`: False
821
+ - `fp16_full_eval`: False
822
+ - `tf32`: True
823
+ - `local_rank`: 0
824
+ - `ddp_backend`: None
825
+ - `tpu_num_cores`: None
826
+ - `tpu_metrics_debug`: False
827
+ - `debug`: []
828
+ - `dataloader_drop_last`: False
829
+ - `dataloader_num_workers`: 0
830
+ - `dataloader_prefetch_factor`: None
831
+ - `past_index`: -1
832
+ - `disable_tqdm`: False
833
+ - `remove_unused_columns`: True
834
+ - `label_names`: None
835
+ - `load_best_model_at_end`: True
836
+ - `ignore_data_skip`: False
837
+ - `fsdp`: []
838
+ - `fsdp_min_num_params`: 0
839
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
840
+ - `fsdp_transformer_layer_cls_to_wrap`: None
841
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
842
+ - `deepspeed`: None
843
+ - `label_smoothing_factor`: 0.0
844
+ - `optim`: adamw_torch_fused
845
+ - `optim_args`: None
846
+ - `adafactor`: False
847
+ - `group_by_length`: False
848
+ - `length_column_name`: length
849
+ - `ddp_find_unused_parameters`: None
850
+ - `ddp_bucket_cap_mb`: None
851
+ - `ddp_broadcast_buffers`: False
852
+ - `dataloader_pin_memory`: True
853
+ - `dataloader_persistent_workers`: False
854
+ - `skip_memory_metrics`: True
855
+ - `use_legacy_prediction_loop`: False
856
+ - `push_to_hub`: False
857
+ - `resume_from_checkpoint`: None
858
+ - `hub_model_id`: None
859
+ - `hub_strategy`: every_save
860
+ - `hub_private_repo`: False
861
+ - `hub_always_push`: False
862
+ - `gradient_checkpointing`: False
863
+ - `gradient_checkpointing_kwargs`: None
864
+ - `include_inputs_for_metrics`: False
865
+ - `eval_do_concat_batches`: True
866
+ - `fp16_backend`: auto
867
+ - `push_to_hub_model_id`: None
868
+ - `push_to_hub_organization`: None
869
+ - `mp_parameters`:
870
+ - `auto_find_batch_size`: False
871
+ - `full_determinism`: False
872
+ - `torchdynamo`: None
873
+ - `ray_scope`: last
874
+ - `ddp_timeout`: 1800
875
+ - `torch_compile`: False
876
+ - `torch_compile_backend`: None
877
+ - `torch_compile_mode`: None
878
+ - `dispatch_batches`: None
879
+ - `split_batches`: None
880
+ - `include_tokens_per_second`: False
881
+ - `include_num_input_tokens_seen`: False
882
+ - `neftune_noise_alpha`: None
883
+ - `optim_target_modules`: None
884
+ - `batch_eval_metrics`: False
885
+ - `eval_on_start`: False
886
+ - `batch_sampler`: no_duplicates
887
+ - `multi_dataset_batch_sampler`: proportional
888
+
889
+ </details>
890
+
891
+ ### Training Logs
892
+ <details><summary>Click to expand</summary>
893
+
894
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
895
+ |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
896
+ | 0.0516 | 10 | 6.6963 | - | - | - | - | - |
897
+ | 0.1033 | 20 | 7.634 | - | - | - | - | - |
898
+ | 0.1549 | 30 | 6.8573 | - | - | - | - | - |
899
+ | 0.2065 | 40 | 8.1731 | - | - | - | - | - |
900
+ | 0.2581 | 50 | 7.2853 | - | - | - | - | - |
901
+ | 0.3098 | 60 | 7.6009 | - | - | - | - | - |
902
+ | 0.3614 | 70 | 9.0776 | - | - | - | - | - |
903
+ | 0.4130 | 80 | 7.8738 | - | - | - | - | - |
904
+ | 0.4647 | 90 | 10.46 | - | - | - | - | - |
905
+ | 0.5163 | 100 | 10.7396 | - | - | - | - | - |
906
+ | 0.5679 | 110 | 10.3513 | - | - | - | - | - |
907
+ | 0.6196 | 120 | 10.654 | - | - | - | - | - |
908
+ | 0.6712 | 130 | 12.6157 | - | - | - | - | - |
909
+ | 0.7228 | 140 | 11.955 | - | - | - | - | - |
910
+ | 0.7744 | 150 | 13.2498 | - | - | - | - | - |
911
+ | 0.8261 | 160 | 11.2981 | - | - | - | - | - |
912
+ | 0.8777 | 170 | 13.8403 | - | - | - | - | - |
913
+ | 0.9293 | 180 | 9.4428 | - | - | - | - | - |
914
+ | 0.9810 | 190 | 8.1768 | - | - | - | - | - |
915
+ | **1.0016** | **194** | **-** | **0.0427** | **0.0507** | **0.0561** | **0.029** | **0.0576** |
916
+ | 1.0303 | 200 | 7.0981 | - | - | - | - | - |
917
+ | 1.0820 | 210 | 7.3113 | - | - | - | - | - |
918
+ | 1.1336 | 220 | 7.0259 | - | - | - | - | - |
919
+ | 1.1852 | 230 | 7.5874 | - | - | - | - | - |
920
+ | 1.2369 | 240 | 7.65 | - | - | - | - | - |
921
+ | 1.2885 | 250 | 7.2387 | - | - | - | - | - |
922
+ | 1.3401 | 260 | 9.001 | - | - | - | - | - |
923
+ | 1.3917 | 270 | 7.5975 | - | - | - | - | - |
924
+ | 1.4434 | 280 | 9.9568 | - | - | - | - | - |
925
+ | 1.4950 | 290 | 10.4123 | - | - | - | - | - |
926
+ | 1.5466 | 300 | 10.5535 | - | - | - | - | - |
927
+ | 1.5983 | 310 | 9.8199 | - | - | - | - | - |
928
+ | 1.6499 | 320 | 12.7258 | - | - | - | - | - |
929
+ | 1.7015 | 330 | 11.9423 | - | - | - | - | - |
930
+ | 1.7531 | 340 | 12.7364 | - | - | - | - | - |
931
+ | 1.8048 | 350 | 12.1926 | - | - | - | - | - |
932
+ | 1.8564 | 360 | 12.926 | - | - | - | - | - |
933
+ | 1.9080 | 370 | 11.8007 | - | - | - | - | - |
934
+ | 1.9597 | 380 | 8.7379 | - | - | - | - | - |
935
+ | 2.0010 | 388 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
936
+ | 2.0090 | 390 | 7.1936 | - | - | - | - | - |
937
+ | 2.0607 | 400 | 6.7359 | - | - | - | - | - |
938
+ | 2.1123 | 410 | 7.4212 | - | - | - | - | - |
939
+ | 2.1639 | 420 | 7.346 | - | - | - | - | - |
940
+ | 2.2156 | 430 | 7.6784 | - | - | - | - | - |
941
+ | 2.2672 | 440 | 7.5079 | - | - | - | - | - |
942
+ | 2.3188 | 450 | 7.8875 | - | - | - | - | - |
943
+ | 2.3704 | 460 | 8.7154 | - | - | - | - | - |
944
+ | 2.4221 | 470 | 8.1278 | - | - | - | - | - |
945
+ | 2.4737 | 480 | 11.1214 | - | - | - | - | - |
946
+ | 2.5253 | 490 | 10.5293 | - | - | - | - | - |
947
+ | 2.5770 | 500 | 9.9882 | - | - | - | - | - |
948
+ | 2.6286 | 510 | 11.5283 | - | - | - | - | - |
949
+ | 2.6802 | 520 | 12.4337 | - | - | - | - | - |
950
+ | 2.7318 | 530 | 11.641 | - | - | - | - | - |
951
+ | 2.7835 | 540 | 13.3482 | - | - | - | - | - |
952
+ | 2.8351 | 550 | 11.7302 | - | - | - | - | - |
953
+ | 2.8867 | 560 | 13.7171 | - | - | - | - | - |
954
+ | 2.9384 | 570 | 8.9323 | - | - | - | - | - |
955
+ | 2.9900 | 580 | 7.4869 | - | - | - | - | - |
956
+ | 3.0003 | 582 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
957
+ | 3.0394 | 590 | 6.9978 | - | - | - | - | - |
958
+ | 3.0910 | 600 | 7.33 | - | - | - | - | - |
959
+ | 3.1426 | 610 | 7.1879 | - | - | - | - | - |
960
+ | 3.1943 | 620 | 7.9204 | - | - | - | - | - |
961
+ | 3.2459 | 630 | 7.4435 | - | - | - | - | - |
962
+ | 3.2975 | 640 | 7.4079 | - | - | - | - | - |
963
+ | 3.3491 | 650 | 9.2445 | - | - | - | - | - |
964
+ | 3.4008 | 660 | 7.1794 | - | - | - | - | - |
965
+ | 3.4524 | 670 | 10.4496 | - | - | - | - | - |
966
+ | 3.5040 | 680 | 10.7556 | - | - | - | - | - |
967
+ | 3.5557 | 690 | 10.3543 | - | - | - | - | - |
968
+ | 3.6073 | 700 | 9.9478 | - | - | - | - | - |
969
+ | 3.6589 | 710 | 12.6559 | - | - | - | - | - |
970
+ | 3.7106 | 720 | 12.2463 | - | - | - | - | - |
971
+ | 3.7622 | 730 | 12.8381 | - | - | - | - | - |
972
+ | 3.8138 | 740 | 11.726 | - | - | - | - | - |
973
+ | 3.8654 | 750 | 13.4883 | - | - | - | - | - |
974
+ | 3.9171 | 760 | 10.7751 | - | - | - | - | - |
975
+ | 3.9687 | 770 | 8.5484 | - | - | - | - | - |
976
+ | 3.9997 | 776 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
977
+ | 4.0181 | 780 | 7.1582 | - | - | - | - | - |
978
+ | 4.0697 | 790 | 7.0161 | - | - | - | - | - |
979
+ | 4.1213 | 800 | 7.11 | - | - | - | - | - |
980
+ | 4.1730 | 810 | 7.4557 | - | - | - | - | - |
981
+ | 4.2246 | 820 | 7.723 | - | - | - | - | - |
982
+ | 4.2762 | 830 | 7.2889 | - | - | - | - | - |
983
+ | 4.3278 | 840 | 8.3884 | - | - | - | - | - |
984
+ | 4.3795 | 850 | 8.1581 | - | - | - | - | - |
985
+ | 4.4311 | 860 | 9.1386 | - | - | - | - | - |
986
+ | 4.4827 | 870 | 10.706 | - | - | - | - | - |
987
+ | 4.5344 | 880 | 10.4258 | - | - | - | - | - |
988
+ | 4.5860 | 890 | 9.9659 | - | - | - | - | - |
989
+ | 4.6376 | 900 | 11.8535 | - | - | - | - | - |
990
+ | 4.6893 | 910 | 12.5578 | - | - | - | - | - |
991
+ | 4.7409 | 920 | 11.834 | - | - | - | - | - |
992
+ | 4.7925 | 930 | 12.5328 | - | - | - | - | - |
993
+ | 4.8441 | 940 | 12.6998 | - | - | - | - | - |
994
+ | 4.8958 | 950 | 12.9728 | - | - | - | - | - |
995
+ | 4.9474 | 960 | 8.9204 | - | - | - | - | - |
996
+ | 4.9990 | 970 | 7.3909 | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
997
+ | 5.0484 | 980 | 6.6683 | - | - | - | - | - |
998
+ | 5.1000 | 990 | 7.5538 | - | - | - | - | - |
999
+ | 5.1517 | 1000 | 6.9256 | - | - | - | - | - |
1000
+ | 5.2033 | 1010 | 8.0908 | - | - | - | - | - |
1001
+ | 5.2549 | 1020 | 7.254 | - | - | - | - | - |
1002
+ | 5.3066 | 1030 | 7.6558 | - | - | - | - | - |
1003
+ | 5.3582 | 1040 | 9.2184 | - | - | - | - | - |
1004
+ | 5.4098 | 1050 | 7.5886 | - | - | - | - | - |
1005
+ | 5.4614 | 1060 | 10.4976 | - | - | - | - | - |
1006
+ | 5.5131 | 1070 | 10.785 | - | - | - | - | - |
1007
+ | 5.5647 | 1080 | 10.2376 | - | - | - | - | - |
1008
+ | 5.6163 | 1090 | 10.4871 | - | - | - | - | - |
1009
+ | 5.6680 | 1100 | 12.6986 | - | - | - | - | - |
1010
+ | 5.7196 | 1110 | 12.0688 | - | - | - | - | - |
1011
+ | 5.7712 | 1120 | 13.1161 | - | - | - | - | - |
1012
+ | 5.8228 | 1130 | 11.3866 | - | - | - | - | - |
1013
+ | 5.8745 | 1140 | 13.7281 | - | - | - | - | - |
1014
+ | 5.9261 | 1150 | 9.8432 | - | - | - | - | - |
1015
+ | 5.9777 | 1160 | 8.2606 | - | - | - | - | - |
1016
+ | 5.9984 | 1164 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
1017
+ | 6.0271 | 1170 | 7.0799 | - | - | - | - | - |
1018
+ | 6.0787 | 1180 | 7.2981 | - | - | - | - | - |
1019
+ | 6.1304 | 1190 | 7.0085 | - | - | - | - | - |
1020
+ | 6.1820 | 1200 | 7.4587 | - | - | - | - | - |
1021
+ | 6.2336 | 1210 | 7.8467 | - | - | - | - | - |
1022
+ | 6.2853 | 1220 | 7.2008 | - | - | - | - | - |
1023
+ | 6.3369 | 1230 | 8.8152 | - | - | - | - | - |
1024
+ | 6.3885 | 1240 | 7.7205 | - | - | - | - | - |
1025
+ | 6.4401 | 1250 | 9.9131 | - | - | - | - | - |
1026
+ | 6.4918 | 1260 | 10.212 | - | - | - | - | - |
1027
+ | 6.5434 | 1270 | 10.6791 | - | - | - | - | - |
1028
+ | 6.5950 | 1280 | 9.8454 | - | - | - | - | - |
1029
+ | 6.6467 | 1290 | 12.4647 | - | - | - | - | - |
1030
+ | 6.6983 | 1300 | 11.8962 | - | - | - | - | - |
1031
+ | 6.7499 | 1310 | 12.8014 | - | - | - | - | - |
1032
+ | 6.8015 | 1320 | 12.1836 | - | - | - | - | - |
1033
+ | 6.8532 | 1330 | 12.9114 | - | - | - | - | - |
1034
+ | 6.9048 | 1340 | 12.1711 | - | - | - | - | - |
1035
+ | 6.9564 | 1350 | 8.8125 | - | - | - | - | - |
1036
+ | 6.9977 | 1358 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
1037
+ | 7.0058 | 1360 | 7.2281 | - | - | - | - | - |
1038
+ | 7.0574 | 1370 | 6.6681 | - | - | - | - | - |
1039
+ | 7.1091 | 1380 | 7.5282 | - | - | - | - | - |
1040
+ | 7.1607 | 1390 | 7.1585 | - | - | - | - | - |
1041
+ | 7.2123 | 1400 | 7.8507 | - | - | - | - | - |
1042
+ | 7.2640 | 1410 | 7.4737 | - | - | - | - | - |
1043
+ | 7.3156 | 1420 | 7.6963 | - | - | - | - | - |
1044
+ | 7.3672 | 1430 | 8.8799 | - | - | - | - | - |
1045
+ | 7.4188 | 1440 | 7.9977 | - | - | - | - | - |
1046
+ | 7.4705 | 1450 | 10.9078 | - | - | - | - | - |
1047
+ | 7.5221 | 1460 | 10.5731 | - | - | - | - | - |
1048
+ | 7.5737 | 1470 | 10.1121 | - | - | - | - | - |
1049
+ | 7.6254 | 1480 | 11.2426 | - | - | - | - | - |
1050
+ | 7.6770 | 1490 | 12.4832 | - | - | - | - | - |
1051
+ | 7.7286 | 1500 | 11.6954 | - | - | - | - | - |
1052
+ | 7.7803 | 1510 | 13.4836 | - | - | - | - | - |
1053
+ | 7.8319 | 1520 | 11.4752 | - | - | - | - | - |
1054
+ | 7.8835 | 1530 | 13.8097 | - | - | - | - | - |
1055
+ | 7.9351 | 1540 | 9.0087 | - | - | - | - | - |
1056
+ | 7.9868 | 1550 | 7.709 | - | - | - | - | - |
1057
+ | 8.0023 | 1553 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
1058
+ | 8.0361 | 1560 | 7.1515 | - | - | - | - | - |
1059
+ | 8.0878 | 1570 | 7.2816 | - | - | - | - | - |
1060
+ | 8.1394 | 1580 | 7.1392 | - | - | - | - | - |
1061
+ | 8.1910 | 1590 | 7.7863 | - | - | - | - | - |
1062
+ | 8.2427 | 1600 | 7.4939 | - | - | - | - | - |
1063
+ | 8.2943 | 1610 | 7.3074 | - | - | - | - | - |
1064
+ | 8.3459 | 1620 | 9.1739 | - | - | - | - | - |
1065
+ | 8.3975 | 1630 | 7.3667 | - | - | - | - | - |
1066
+ | 8.4492 | 1640 | 10.2528 | - | - | - | - | - |
1067
+ | 8.5008 | 1650 | 10.6824 | - | - | - | - | - |
1068
+ | 8.5524 | 1660 | 10.3765 | - | - | - | - | - |
1069
+ | 8.6041 | 1670 | 9.853 | - | - | - | - | - |
1070
+ | 8.6557 | 1680 | 12.8624 | - | - | - | - | - |
1071
+ | 8.7073 | 1690 | 12.0849 | - | - | - | - | - |
1072
+ | 8.7590 | 1700 | 12.7345 | - | - | - | - | - |
1073
+ | 8.8106 | 1710 | 11.9884 | - | - | - | - | - |
1074
+ | 8.8622 | 1720 | 13.2117 | - | - | - | - | - |
1075
+ | 8.9138 | 1730 | 11.1261 | - | - | - | - | - |
1076
+ | 8.9655 | 1740 | 8.5941 | - | - | - | - | - |
1077
+ | 9.0016 | 1747 | - | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
1078
+ | 9.0148 | 1750 | 7.2587 | - | - | - | - | - |
1079
+ | 9.0665 | 1760 | 6.8577 | - | - | - | - | - |
1080
+ | 9.1181 | 1770 | 7.2256 | - | - | - | - | - |
1081
+ | 9.1697 | 1780 | 7.456 | - | - | - | - | - |
1082
+ | 9.2214 | 1790 | 7.6563 | - | - | - | - | - |
1083
+ | 9.2730 | 1800 | 7.3877 | - | - | - | - | - |
1084
+ | 9.3246 | 1810 | 8.2009 | - | - | - | - | - |
1085
+ | 9.3763 | 1820 | 8.5318 | - | - | - | - | - |
1086
+ | 9.4279 | 1830 | 8.5052 | - | - | - | - | - |
1087
+ | 9.4795 | 1840 | 10.9953 | - | - | - | - | - |
1088
+ | 9.5311 | 1850 | 10.4012 | - | - | - | - | - |
1089
+ | 9.5828 | 1860 | 10.0235 | - | - | - | - | - |
1090
+ | 9.6344 | 1870 | 11.9031 | - | - | - | - | - |
1091
+ | 9.6860 | 1880 | 12.5293 | - | - | - | - | - |
1092
+ | 9.7377 | 1890 | 11.5157 | - | - | - | - | - |
1093
+ | 9.7893 | 1900 | 12.8049 | - | - | - | - | - |
1094
+ | 9.8409 | 1910 | 12.4659 | - | - | - | - | - |
1095
+ | 9.8925 | 1920 | 13.1517 | - | - | - | - | - |
1096
+ | 9.9442 | 1930 | 9.0604 | 0.0427 | 0.0507 | 0.0561 | 0.0290 | 0.0576 |
1097
+
1098
+ * The bold row denotes the saved checkpoint.
1099
+ </details>
1100
+
1101
+ ### Framework Versions
1102
+ - Python: 3.10.13
1103
+ - Sentence Transformers: 3.0.1
1104
+ - Transformers: 4.42.3
1105
+ - PyTorch: 2.5.0.dev20240704+cu124
1106
+ - Accelerate: 0.32.1
1107
+ - Datasets: 2.20.0
1108
+ - Tokenizers: 0.19.1
1109
+
1110
+ ## Citation
1111
+
1112
+ ### BibTeX
1113
+
1114
+ #### Sentence Transformers
1115
+ ```bibtex
1116
+ @inproceedings{reimers-2019-sentence-bert,
1117
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1118
+ author = "Reimers, Nils and Gurevych, Iryna",
1119
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1120
+ month = "11",
1121
+ year = "2019",
1122
+ publisher = "Association for Computational Linguistics",
1123
+ url = "https://arxiv.org/abs/1908.10084",
1124
+ }
1125
+ ```
1126
+
1127
+ #### MatryoshkaLoss
1128
+ ```bibtex
1129
+ @misc{kusupati2024matryoshka,
1130
+ title={Matryoshka Representation Learning},
1131
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1132
+ year={2024},
1133
+ eprint={2205.13147},
1134
+ archivePrefix={arXiv},
1135
+ primaryClass={cs.LG}
1136
+ }
1137
+ ```
1138
+
1139
+ #### MultipleNegativesRankingLoss
1140
+ ```bibtex
1141
+ @misc{henderson2017efficient,
1142
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1143
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1144
+ year={2017},
1145
+ eprint={1705.00652},
1146
+ archivePrefix={arXiv},
1147
+ primaryClass={cs.CL}
1148
+ }
1149
+ ```
1150
+
1151
+ <!--
1152
+ ## Glossary
1153
+
1154
+ *Clearly define terms in order to be accessible across audiences.*
1155
+ -->
1156
+
1157
+ <!--
1158
+ ## Model Card Authors
1159
+
1160
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1161
+ -->
1162
+
1163
+ <!--
1164
+ ## Model Card Contact
1165
+
1166
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1167
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./bge-base-financial-matryoshka/checkpoint-194",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.3",
5
+ "pytorch": "2.5.0.dev20240704+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3fd10a24bf86833d54a50a03e1b818d1cc3e53792d1fade4318858dcb31fcf4
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff