File size: 3,033 Bytes
9e8aa3d f302b5b 9e8aa3d 5d61107 9e8aa3d 5fe0a34 9e8aa3d 5d61107 9e8aa3d 5fe0a34 9e8aa3d 5d61107 9e8aa3d 5fe0a34 9e8aa3d 5d61107 9e8aa3d 5fe0a34 9e8aa3d 5d61107 9e8aa3d 5d61107 9e8aa3d 5d61107 9e8aa3d 5d61107 9e8aa3d 5d61107 9e8aa3d 5d61107 9e8aa3d a54cf9e 9e8aa3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
language:
- mt
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- mt
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-1b-cv8-mt-lm
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: mt
metrics:
- name: Test WER
type: wer
value: 15.88
- name: Test CER
type: cer
value: 3.65
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: mt
metrics:
- name: Test WER
type: wer
value: null
- name: Test CER
type: cer
value: null
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-cv8-mt-lm
This model is a fine-tuned version of [wav2vec2-large-xls-r-1b-cv8-mt-lm](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice 8 dataset.
It achieves the following results on the test set:
- Loss: 0.2210
- Wer: 0.1974
Note that the above test results come from the original model without LM (language model) which can be found at https://huggingface.co/RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt. The results with the LM model can be found on the right side of this model card.
## Model description
Model RuudVelo/wav2vec2-large-xls-r-1b-cv8-mt which has been improved with a KenLM 3-gram.
## Intended uses & limitations
More information needed
## Training and evaluation data
Common Voice 8 mt dataset has been used for the model
## Training procedure
### Training hyperparameters
The following config and hyperparameters were used during training:
model = Wav2Vec2ForCTC.from_pretrained(
"facebook/wav2vec2-xls-r-1b",
attention_dropout=0.05,
hidden_dropout=0.05,
feat_proj_dropout=0.05,
mask_time_prob=0.55,
mask_feature_prob=0.10,
layerdrop=0.05,
ctc_zero_infinity=True,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
from transformers import TrainingArguments
training_args = TrainingArguments(
output_dir=repo_name,
group_by_length=True,
per_device_train_batch_size=32,
gradient_accumulation_steps=2,
evaluation_strategy="steps",
num_train_epochs=50,
gradient_checkpointing=True,
fp16=True,
save_steps=400,
eval_steps=400,
logging_steps=400,
learning_rate=5.5e-05,
warmup_steps=500,
save_total_limit=2,
push_to_hub=True,
report_to="tensorboard")
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0 |