Ryukijano commited on
Commit
795d6a2
·
verified ·
1 Parent(s): 0d0529d

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-generation-inference
5
+ - image-text-to-text
6
+ - text-generation
7
+ - peft
8
+ library_name: transformers
9
+ base_model: google/paligemma-3b-pt-224
10
+ license: other
11
+ datasets:
12
+ - abhishek/vqa_small
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
18
+
19
+ # Usage
20
+
21
+ ```python
22
+ # you will need to adjust code if you didnt use peft
23
+
24
+ from PIL import Image
25
+ from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
26
+ import torch
27
+ import requests
28
+ from peft import PeftModel
29
+
30
+ base_model_id = BASE_MODEL_ID
31
+ peft_model_id = THIS_MODEL_ID
32
+ max_new_tokens = 100
33
+ text = "Whats on the flower?"
34
+ img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bee.JPG?download=true"
35
+ image = Image.open(requests.get(img_url, stream=True).raw)
36
+
37
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
38
+ base_model = PaliGemmaForConditionalGeneration.from_pretrained(base_model_id)
39
+ processor = PaliGemmaProcessor.from_pretrained(base_model_id)
40
+
41
+ model = PeftModel.from_pretrained(base_model, peft_model_id)
42
+ model.merge_and_unload()
43
+
44
+ model = model.eval().to(device)
45
+
46
+ inputs = processor(text=text, images=image, return_tensors="pt").to(device)
47
+ with torch.inference_mode():
48
+ generated_ids = model.generate(
49
+ **inputs,
50
+ max_new_tokens=max_new_tokens,
51
+ do_sample=False,
52
+ )
53
+ result = processor.batch_decode(generated_ids, skip_special_tokens=True)
54
+ print(result)
55
+ ```
adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma-3b-pt-224",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "linear",
26
+ "up_proj",
27
+ "out_proj",
28
+ "down_proj",
29
+ "k_proj",
30
+ "lm_head",
31
+ "fc2",
32
+ "fc1",
33
+ "gate_proj",
34
+ "q_proj"
35
+ ],
36
+ "task_type": "CAUSAL_LM",
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fd55ccb9725cdd14eb840234ac5fc4db8d95acb943edf0de13f4a6c7ed1cc0c
3
+ size 2237231056
checkpoint-281/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: google/paligemma-3b-pt-224
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
checkpoint-281/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "google/paligemma-3b-pt-224",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "o_proj",
24
+ "v_proj",
25
+ "linear",
26
+ "up_proj",
27
+ "out_proj",
28
+ "down_proj",
29
+ "k_proj",
30
+ "lm_head",
31
+ "fc2",
32
+ "fc1",
33
+ "gate_proj",
34
+ "q_proj"
35
+ ],
36
+ "task_type": "CAUSAL_LM",
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-281/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fd55ccb9725cdd14eb840234ac5fc4db8d95acb943edf0de13f4a6c7ed1cc0c
3
+ size 2237231056
checkpoint-281/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33d6710279ac800c2a985fe0c3ed7b79a2d82cf6e85db2d9ebb66b50d0071863
3
+ size 190292282
checkpoint-281/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:116fa21b44b3fb6fc207010c99c34936bd28b69f96f2a354fa1c0bc2c2540102
3
+ size 14244
checkpoint-281/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7822001fdd8a375d3a21ed9d4bbe01bd7e7a70de9e735d6c42f9db269c561815
3
+ size 1064
checkpoint-281/trainer_state.json ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.7993471622467041,
3
+ "best_model_checkpoint": "ryukijano-paligemma-finetuned\\checkpoint-281",
4
+ "epoch": 8.992,
5
+ "eval_steps": 500,
6
+ "global_step": 281,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.8,
13
+ "grad_norm": 4.558422088623047,
14
+ "learning_rate": 1.6129032258064516e-06,
15
+ "loss": 1.5484,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.992,
20
+ "eval_loss": 1.8585567474365234,
21
+ "eval_runtime": 19.9397,
22
+ "eval_samples_per_second": 12.538,
23
+ "eval_steps_per_second": 6.269,
24
+ "step": 31
25
+ },
26
+ {
27
+ "epoch": 1.6,
28
+ "grad_norm": 4.804387092590332,
29
+ "learning_rate": 3.225806451612903e-06,
30
+ "loss": 1.5841,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 1.984,
35
+ "eval_loss": 1.803800106048584,
36
+ "eval_runtime": 20.1703,
37
+ "eval_samples_per_second": 12.394,
38
+ "eval_steps_per_second": 6.197,
39
+ "step": 62
40
+ },
41
+ {
42
+ "epoch": 2.4,
43
+ "grad_norm": 4.384600639343262,
44
+ "learning_rate": 4.838709677419355e-06,
45
+ "loss": 1.5184,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 2.976,
50
+ "eval_loss": 1.677108883857727,
51
+ "eval_runtime": 19.7443,
52
+ "eval_samples_per_second": 12.662,
53
+ "eval_steps_per_second": 6.331,
54
+ "step": 93
55
+ },
56
+ {
57
+ "epoch": 3.2,
58
+ "grad_norm": 4.877094268798828,
59
+ "learning_rate": 6.451612903225806e-06,
60
+ "loss": 1.3985,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 4.0,
65
+ "grad_norm": 5.035943508148193,
66
+ "learning_rate": 8.064516129032258e-06,
67
+ "loss": 1.2081,
68
+ "step": 125
69
+ },
70
+ {
71
+ "epoch": 4.0,
72
+ "eval_loss": 1.4368913173675537,
73
+ "eval_runtime": 20.3141,
74
+ "eval_samples_per_second": 12.307,
75
+ "eval_steps_per_second": 6.153,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 4.8,
80
+ "grad_norm": 3.080859422683716,
81
+ "learning_rate": 9.67741935483871e-06,
82
+ "loss": 1.0413,
83
+ "step": 150
84
+ },
85
+ {
86
+ "epoch": 4.992,
87
+ "eval_loss": 1.1628715991973877,
88
+ "eval_runtime": 20.1314,
89
+ "eval_samples_per_second": 12.418,
90
+ "eval_steps_per_second": 6.209,
91
+ "step": 156
92
+ },
93
+ {
94
+ "epoch": 5.6,
95
+ "grad_norm": 2.4689671993255615,
96
+ "learning_rate": 1.1290322580645164e-05,
97
+ "loss": 0.8372,
98
+ "step": 175
99
+ },
100
+ {
101
+ "epoch": 5.984,
102
+ "eval_loss": 0.9508486390113831,
103
+ "eval_runtime": 20.101,
104
+ "eval_samples_per_second": 12.437,
105
+ "eval_steps_per_second": 6.219,
106
+ "step": 187
107
+ },
108
+ {
109
+ "epoch": 6.4,
110
+ "grad_norm": 1.9029561281204224,
111
+ "learning_rate": 1.2903225806451613e-05,
112
+ "loss": 0.7411,
113
+ "step": 200
114
+ },
115
+ {
116
+ "epoch": 6.976,
117
+ "eval_loss": 0.8626062870025635,
118
+ "eval_runtime": 19.8558,
119
+ "eval_samples_per_second": 12.591,
120
+ "eval_steps_per_second": 6.295,
121
+ "step": 218
122
+ },
123
+ {
124
+ "epoch": 7.2,
125
+ "grad_norm": 2.5312154293060303,
126
+ "learning_rate": 1.4516129032258066e-05,
127
+ "loss": 0.6682,
128
+ "step": 225
129
+ },
130
+ {
131
+ "epoch": 8.0,
132
+ "grad_norm": 2.895367383956909,
133
+ "learning_rate": 1.6129032258064517e-05,
134
+ "loss": 0.5702,
135
+ "step": 250
136
+ },
137
+ {
138
+ "epoch": 8.0,
139
+ "eval_loss": 0.8156193494796753,
140
+ "eval_runtime": 20.1295,
141
+ "eval_samples_per_second": 12.42,
142
+ "eval_steps_per_second": 6.21,
143
+ "step": 250
144
+ },
145
+ {
146
+ "epoch": 8.8,
147
+ "grad_norm": 3.090899705886841,
148
+ "learning_rate": 1.774193548387097e-05,
149
+ "loss": 0.5168,
150
+ "step": 275
151
+ },
152
+ {
153
+ "epoch": 8.992,
154
+ "eval_loss": 0.7993471622467041,
155
+ "eval_runtime": 20.053,
156
+ "eval_samples_per_second": 12.467,
157
+ "eval_steps_per_second": 6.233,
158
+ "step": 281
159
+ }
160
+ ],
161
+ "logging_steps": 25,
162
+ "max_steps": 3100,
163
+ "num_input_tokens_seen": 0,
164
+ "num_train_epochs": 100,
165
+ "save_steps": 500,
166
+ "stateful_callbacks": {
167
+ "TrainerControl": {
168
+ "args": {
169
+ "should_epoch_stop": false,
170
+ "should_evaluate": false,
171
+ "should_log": false,
172
+ "should_save": true,
173
+ "should_training_stop": false
174
+ },
175
+ "attributes": {}
176
+ }
177
+ },
178
+ "total_flos": 3.5386074301492224e+16,
179
+ "train_batch_size": 2,
180
+ "trial_name": null,
181
+ "trial_params": null
182
+ }
checkpoint-281/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b15a87654c40c305c7513355a0aa4ebd5cd4b669826e6a32fbcdd26b646a113
3
+ size 5240
runs/Oct07_14-04-44_UOL-PBWS1004455/events.out.tfevents.1728306289.UOL-PBWS1004455.78452.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7be3d19eb81dfb2d9407f2e54ea7d4e88805efef360e1511367b9fc95994d05a
3
- size 57578
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4fb598e2a6b8e0807b4ca8e74d94993eaf108f3fc3cd78e32cf69af7914d95d5
3
+ size 59378
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b15a87654c40c305c7513355a0aa4ebd5cd4b669826e6a32fbcdd26b646a113
3
+ size 5240
training_params.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": "google/paligemma-3b-pt-224",
3
+ "project_name": "ryukijano-paligemma-finetuned",
4
+ "data_path": "abhishek/vqa_small",
5
+ "train_split": "train",
6
+ "valid_split": "validation",
7
+ "trainer": "vqa",
8
+ "log": "tensorboard",
9
+ "disable_gradient_checkpointing": false,
10
+ "logging_steps": -1,
11
+ "eval_strategy": "epoch",
12
+ "save_total_limit": 1,
13
+ "auto_find_batch_size": false,
14
+ "mixed_precision": "fp16",
15
+ "lr": 2e-05,
16
+ "epochs": 100,
17
+ "batch_size": 2,
18
+ "warmup_ratio": 0.1,
19
+ "gradient_accumulation": 16,
20
+ "optimizer": "adamw_torch",
21
+ "scheduler": "linear",
22
+ "weight_decay": 0.0,
23
+ "max_grad_norm": 1.0,
24
+ "seed": 42,
25
+ "quantization": "int4",
26
+ "target_modules": "all-linear",
27
+ "merge_adapter": false,
28
+ "peft": true,
29
+ "lora_r": 16,
30
+ "lora_alpha": 32,
31
+ "lora_dropout": 0.05,
32
+ "image_column": "image",
33
+ "text_column": "multiple_choice_answer",
34
+ "prompt_text_column": "question",
35
+ "push_to_hub": true,
36
+ "username": "Ryukijano"
37
+ }