SAL83 commited on
Commit
2075b8d
·
1 Parent(s): 0523ecc

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.89 +/- 0.84
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -1.25 +/- 0.60
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dbefd51c5da2dca306623b625f7c2d9083408ccbda9a19a81a2003066f5ecf53
3
- size 108016
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4922379c5704a4f33c2a0448d99fd4fc50600d9b86d77d0267af50e824597a77
3
+ size 107773
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2adfbe8a60>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7f2adfbe6e80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -41,12 +41,12 @@
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
- "num_timesteps": 1000000,
45
- "_total_timesteps": 1000000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
- "start_time": 1679649934679520702,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
@@ -55,10 +55,10 @@
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo4l1vq70z7/Njli9RjVtv4Ffi7+z2ho/7ViNv//RcD+2S+a+LoZ/vgREIT/MKKM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dpruUaA5LBEsGhpRoEnSUUpR1Lg==",
59
- "achieved_goal": "[[0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]]",
60
- "desired_goal": "[[-0.23978285 -1.6246545 -0.05287056]\n [-0.92659414 -1.088852 0.6048996 ]\n [-1.1042763 0.9407043 -0.44979638]\n [-0.24953529 0.6299441 1.2746825 ]]",
61
- "observation": "[[ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,9 +66,9 @@
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY4pavdSAKr3ak4I+88N/PGTXV7yqbQk+LhETvrMVuD0Cinw+jyi+uvbOOD2hOHM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
- "desired_goal": "[[-0.05335463 -0.04162677 0.25503427]\n [ 0.01561068 -0.01317391 0.1342074 ]\n [-0.14362022 0.08988514 0.24662021]\n [-0.00145079 0.04511925 0.23752071]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
@@ -77,13 +77,13 @@
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIucMmMnOBEsCUhpRSlIwBbJRLMowBdJRHQKgCl6iTMaF1fZQoaAZoCWgPQwjSx3xAoPP6v5SGlFKUaBVLMmgWR0CoAlpokAxSdX2UKGgGaAloD0MI2hoRjIMLC8CUhpRSlGgVSzJoFkdAqAIZ4yGi6HV9lChoBmgJaA9DCEvnw7MEiRjAlIaUUpRoFUsyaBZHQKgB2twJgLJ1fZQoaAZoCWgPQwj9E1ysqBEUwJSGlFKUaBVLMmgWR0CoA7gNoakzdX2UKGgGaAloD0MIsMbZdAQw8r+UhpRSlGgVSzJoFkdAqAN6vJRwZXV9lChoBmgJaA9DCP0ubM1WTiDAlIaUUpRoFUsyaBZHQKgDOiTt9hJ1fZQoaAZoCWgPQwizCTAsf/4HwJSGlFKUaBVLMmgWR0CoAvo0qH45dX2UKGgGaAloD0MImQ6dnnfjBsCUhpRSlGgVSzJoFkdAqATGALApKHV9lChoBmgJaA9DCGqIKvwZngPAlIaUUpRoFUsyaBZHQKgEiNd7fHh1fZQoaAZoCWgPQwjpEDgSaPALwJSGlFKUaBVLMmgWR0CoBEgPuogndX2UKGgGaAloD0MIcQLTad1G/L+UhpRSlGgVSzJoFkdAqAQIOBlMAXV9lChoBmgJaA9DCLWIKCZvoALAlIaUUpRoFUsyaBZHQKgF2apgkTp1fZQoaAZoCWgPQwiuga0SLM4KwJSGlFKUaBVLMmgWR0CoBZxrJr+HdX2UKGgGaAloD0MI+n3/5sX5EMCUhpRSlGgVSzJoFkdAqAVbjcVQAXV9lChoBmgJaA9DCFN7EW3HdA/AlIaUUpRoFUsyaBZHQKgFG7aIval1fZQoaAZoCWgPQwiWsaGb/cEDwJSGlFKUaBVLMmgWR0CoBupHy3CsdX2UKGgGaAloD0MIkPY/wFo1/r+UhpRSlGgVSzJoFkdAqAas7fYSQHV9lChoBmgJaA9DCAuXVdgMsATAlIaUUpRoFUsyaBZHQKgGbDjzZpV1fZQoaAZoCWgPQwiUoSqm0u8IwJSGlFKUaBVLMmgWR0CoBiwwj+rEdX2UKGgGaAloD0MIKPOPvkmzEsCUhpRSlGgVSzJoFkdAqAf9/DtPYXV9lChoBmgJaA9DCPSMfcnGw/W/lIaUUpRoFUsyaBZHQKgHwKx9oex1fZQoaAZoCWgPQwj8w5YeTXUAwJSGlFKUaBVLMmgWR0CoB3/6oESvdX2UKGgGaAloD0MIjuvf9ZmzCMCUhpRSlGgVSzJoFkdAqAc//zasZHV9lChoBmgJaA9DCJ7sZkY/+gvAlIaUUpRoFUsyaBZHQKgJDg4wRGt1fZQoaAZoCWgPQwgujzUjg1z9v5SGlFKUaBVLMmgWR0CoCND7IkqudX2UKGgGaAloD0MIL6cExCR8BMCUhpRSlGgVSzJoFkdAqAiQOOKfnXV9lChoBmgJaA9DCLwFEhQ/phHAlIaUUpRoFUsyaBZHQKgIUHM2WIJ1fZQoaAZoCWgPQwiKWwUx0LUDwJSGlFKUaBVLMmgWR0CoChmi5/b1dX2UKGgGaAloD0MI9dbAVgm2DcCUhpRSlGgVSzJoFkdAqAncbtJFs3V9lChoBmgJaA9DCEM7p1mgXfG/lIaUUpRoFUsyaBZHQKgJm9X9zfd1fZQoaAZoCWgPQwit30xMF6IBwJSGlFKUaBVLMmgWR0CoCVu/1xsEdX2UKGgGaAloD0MIPdNLjGXqE8CUhpRSlGgVSzJoFkdAqAsw0Q9RrXV9lChoBmgJaA9DCMqIC0Cj9AHAlIaUUpRoFUsyaBZHQKgK84BFNL11fZQoaAZoCWgPQwh24JwRpW0SwJSGlFKUaBVLMmgWR0CoCrLHEMspdX2UKGgGaAloD0MIByY3iqzlEcCUhpRSlGgVSzJoFkdAqApyxeLNwHV9lChoBmgJaA9DCENWt3pO+gPAlIaUUpRoFUsyaBZHQKgMRZ13dKx1fZQoaAZoCWgPQwgcmNwosjYCwJSGlFKUaBVLMmgWR0CoDAhsQ/X5dX2UKGgGaAloD0MIJXSXxFkxDMCUhpRSlGgVSzJoFkdAqAvHwgDA8HV9lChoBmgJaA9DCEPmyqDa0BPAlIaUUpRoFUsyaBZHQKgLh+4LCvZ1fZQoaAZoCWgPQwjImSZsP9n3v5SGlFKUaBVLMmgWR0CoDVmknCwbdX2UKGgGaAloD0MI1GGFWz6S+r+UhpRSlGgVSzJoFkdAqA0cfYBeX3V9lChoBmgJaA9DCPAYHvtZPBHAlIaUUpRoFUsyaBZHQKgM281XNkh1fZQoaAZoCWgPQwix4H7AA6MAwJSGlFKUaBVLMmgWR0CoDJvAGjbjdX2UKGgGaAloD0MI1QloImw4CcCUhpRSlGgVSzJoFkdAqA547gbZOHV9lChoBmgJaA9DCFcju9IyEvi/lIaUUpRoFUsyaBZHQKgOO9OARTV1fZQoaAZoCWgPQwjFq6xtigfwv5SGlFKUaBVLMmgWR0CoDftNrTH9dX2UKGgGaAloD0MI4lgXt9FgEMCUhpRSlGgVSzJoFkdAqA27ltCRfXV9lChoBmgJaA9DCOm2RC44IwfAlIaUUpRoFUsyaBZHQKgPmJ+lTFV1fZQoaAZoCWgPQwiNCMbBpaP9v5SGlFKUaBVLMmgWR0CoD1tbcGkfdX2UKGgGaAloD0MIWwndJXF2AsCUhpRSlGgVSzJoFkdAqA8avPkaM3V9lChoBmgJaA9DCKVPq+gPzQbAlIaUUpRoFUsyaBZHQKgO2ubI91V1fZQoaAZoCWgPQwix4emVsozpv5SGlFKUaBVLMmgWR0CoELYGUwBYdX2UKGgGaAloD0MIpKt0d509E8CUhpRSlGgVSzJoFkdAqBB4zxgAqHV9lChoBmgJaA9DCCs1e6AVGAzAlIaUUpRoFUsyaBZHQKgQOAskIHF1fZQoaAZoCWgPQwgId2fttmsHwJSGlFKUaBVLMmgWR0CoD/gCfYjCdX2UKGgGaAloD0MI75I4K6IWEsCUhpRSlGgVSzJoFkdAqBItMIu5BnV9lChoBmgJaA9DCDqVDABVvBDAlIaUUpRoFUsyaBZHQKgR8Suhbnp1fZQoaAZoCWgPQwhn1HyVfIwFwJSGlFKUaBVLMmgWR0CoEbGJN0vHdX2UKGgGaAloD0MIvHZpw2H5EcCUhpRSlGgVSzJoFkdAqBFyliz9j3V9lChoBmgJaA9DCNVbA1slmPy/lIaUUpRoFUsyaBZHQKgUA6unuRd1fZQoaAZoCWgPQwjSGRh5WfMTwJSGlFKUaBVLMmgWR0CoE8dJSR8udX2UKGgGaAloD0MI6Nms+lwNGsCUhpRSlGgVSzJoFkdAqBOHjuKGcnV9lChoBmgJaA9DCE1KQbeXlALAlIaUUpRoFUsyaBZHQKgTSG5+Ytx1fZQoaAZoCWgPQwiPiZRm8/gSwJSGlFKUaBVLMmgWR0CoFcfwqiGndX2UKGgGaAloD0MIF0Z6UbufBsCUhpRSlGgVSzJoFkdAqBWMFY+0PnV9lChoBmgJaA9DCGA97lutwxTAlIaUUpRoFUsyaBZHQKgVTFa0Qbx1fZQoaAZoCWgPQwg3cXK/Q3EIwJSGlFKUaBVLMmgWR0CoFQ2Bas6rdX2UKGgGaAloD0MIN8e5TbhX87+UhpRSlGgVSzJoFkdAqBe8Yl6Z6XV9lChoBmgJaA9DCEbRAx+D5RfAlIaUUpRoFUsyaBZHQKgXgBWgezV1fZQoaAZoCWgPQwj4GRcOhAQHwJSGlFKUaBVLMmgWR0CoF0CA2AG0dX2UKGgGaAloD0MILbMIxVYQDcCUhpRSlGgVSzJoFkdAqBcBdQfp2XV9lChoBmgJaA9DCDjYmxiSkwfAlIaUUpRoFUsyaBZHQKgZpoYekpJ1fZQoaAZoCWgPQwgYsU8AxQgHwJSGlFKUaBVLMmgWR0CoGWpGOMl1dX2UKGgGaAloD0MILXx9rUtN+L+UhpRSlGgVSzJoFkdAqBkqshgVoHV9lChoBmgJaA9DCMxAZfz7zA3AlIaUUpRoFUsyaBZHQKgY6+wC8vp1fZQoaAZoCWgPQwiEm4wqw/gHwJSGlFKUaBVLMmgWR0CoG59Mbm2cdX2UKGgGaAloD0MIumWH+IdNDsCUhpRSlGgVSzJoFkdAqBtjGFSKnHV9lChoBmgJaA9DCHDurx73Le6/lIaUUpRoFUsyaBZHQKgbIyuZCv51fZQoaAZoCWgPQwj1LAjlfXwLwJSGlFKUaBVLMmgWR0CoGuQQlKK6dX2UKGgGaAloD0MIBMdl3NSA97+UhpRSlGgVSzJoFkdAqBz4YxcmjXV9lChoBmgJaA9DCMPWbOUlfw7AlIaUUpRoFUsyaBZHQKgcuyzHCGh1fZQoaAZoCWgPQwjAJQD/lIoMwJSGlFKUaBVLMmgWR0CoHHpWV/tqdX2UKGgGaAloD0MIdPBMaJJoFMCUhpRSlGgVSzJoFkdAqBw6wbEP2HV9lChoBmgJaA9DCLyuX7Ab9gvAlIaUUpRoFUsyaBZHQKgeCqPOpsJ1fZQoaAZoCWgPQwgabVUS2QcMwJSGlFKUaBVLMmgWR0CoHc2DpTuOdX2UKGgGaAloD0MI1lJA2v8AB8CUhpRSlGgVSzJoFkdAqB2M+LWI43V9lChoBmgJaA9DCApnt5bJQBXAlIaUUpRoFUsyaBZHQKgdTTDO1OV1fZQoaAZoCWgPQwhm22lrRDDwv5SGlFKUaBVLMmgWR0CoHyGzru6VdX2UKGgGaAloD0MI8MLWbOVFD8CUhpRSlGgVSzJoFkdAqB7keQuEmXV9lChoBmgJaA9DCMzQeCKIcwrAlIaUUpRoFUsyaBZHQKgeo8OCoTB1fZQoaAZoCWgPQwiXkXpP5fQGwJSGlFKUaBVLMmgWR0CoHmPZAY51dX2UKGgGaAloD0MIxofZy7ZTCMCUhpRSlGgVSzJoFkdAqCA6IDYAbXV9lChoBmgJaA9DCBTnqKPj+hLAlIaUUpRoFUsyaBZHQKgf/Pqs2eh1fZQoaAZoCWgPQwg26Etvf/4QwJSGlFKUaBVLMmgWR0CoH7xe1KGtdX2UKGgGaAloD0MILGaEtwfh8L+UhpRSlGgVSzJoFkdAqB98i2UjcHV9lChoBmgJaA9DCCXK3lLOlxDAlIaUUpRoFUsyaBZHQKghU52hZhd1fZQoaAZoCWgPQwiZEkn0Mkr3v5SGlFKUaBVLMmgWR0CoIRaKtPpIdX2UKGgGaAloD0MIm49rQ8X4DsCUhpRSlGgVSzJoFkdAqCDVzjm0V3V9lChoBmgJaA9DCBmRKLSsWwLAlIaUUpRoFUsyaBZHQKgglfCyhSN1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
- "_n_updates": 50000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f02db45ba60>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f02db462180>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
41
  "_np_random": null
42
  },
43
  "n_envs": 4,
44
+ "num_timesteps": 1400000,
45
+ "_total_timesteps": 1400000,
46
  "_num_timesteps_at_start": 0,
47
  "seed": null,
48
  "action_noise": null,
49
+ "start_time": 1679655706342106438,
50
  "learning_rate": 0.0007,
51
  "tensorboard_log": null,
52
  "lr_schedule": {
 
55
  },
56
  "_last_obs": {
57
  ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkdzqvmt9cL4UBTY9fm1wviGiUT8Kl5a/hcGlvtNRyb+jXxs/hVOyP8KO/D1os9y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]]",
60
+ "desired_goal": "[[-0.45871404 -0.23485343 0.04443844]\n [-0.23479268 0.81888014 -1.1764843 ]\n [-0.32374206 -1.5728096 0.60692805]\n [ 1.3931738 0.12331916 -0.43105626]]",
61
+ "observation": "[[ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]]"
62
  },
63
  "_last_episode_starts": {
64
  ":type:": "<class 'numpy.ndarray'>",
 
66
  },
67
  "_last_original_obs": {
68
  ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7r2kPIWYFb77WIw+u9KZPcTbnz2TuZs8Lge3PSoa4z1IE5c+mPKGvdCOLb2YowU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.0201101 -0.14608963 0.27411637]\n [ 0.07510897 0.07805589 0.01900939]\n [ 0.08936916 0.11088975 0.29506898]\n [-0.0658924 -0.04237252 0.13050687]]",
72
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
  },
74
  "_episode_num": 0,
 
77
  "_current_progress_remaining": 0.0,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxXHg1XLn9b+UhpRSlIwBbJRLMowBdJRHQLRz0Q5myxB1fZQoaAZoCWgPQwjWxW00gHf6v5SGlFKUaBVLMmgWR0C0c4Xv+fh/dX2UKGgGaAloD0MIKGTnbWy28b+UhpRSlGgVSzJoFkdAtHNOV0Lc9HV9lChoBmgJaA9DCEMaFTjZhuq/lIaUUpRoFUsyaBZHQLRzEGyHEdh1fZQoaAZoCWgPQwic4Jumz071v5SGlFKUaBVLMmgWR0C0dHlPacqfdX2UKGgGaAloD0MIUfhsHRzs7L+UhpRSlGgVSzJoFkdAtHQuNwR5DHV9lChoBmgJaA9DCNP1RNeFH+y/lIaUUpRoFUsyaBZHQLRz9qh11W91fZQoaAZoCWgPQwiLGeHtQUj6v5SGlFKUaBVLMmgWR0C0c7jLr5ZbdX2UKGgGaAloD0MI5IV0eAjj7b+UhpRSlGgVSzJoFkdAtHUj28IzFnV9lChoBmgJaA9DCM0+j1GeefC/lIaUUpRoFUsyaBZHQLR02L+PzWh1fZQoaAZoCWgPQwh+5UF6ipzkv5SGlFKUaBVLMmgWR0C0dKEyLyc1dX2UKGgGaAloD0MICBwJNNgU87+UhpRSlGgVSzJoFkdAtHRjUkOZs3V9lChoBmgJaA9DCFiut81USPO/lIaUUpRoFUsyaBZHQLR1zlv60pp1fZQoaAZoCWgPQwjus8pMaV0AwJSGlFKUaBVLMmgWR0C0dYM8s+V1dX2UKGgGaAloD0MI965BX3q78r+UhpRSlGgVSzJoFkdAtHVLqcEvCnV9lChoBmgJaA9DCIkLQKN06fm/lIaUUpRoFUsyaBZHQLR1DcWCVbB1fZQoaAZoCWgPQwi/tRMlIZHqv5SGlFKUaBVLMmgWR0C0dnhkEs8QdX2UKGgGaAloD0MI8uzyrQ9r8L+UhpRSlGgVSzJoFkdAtHYtSwW30HV9lChoBmgJaA9DCEsFFVW/UuS/lIaUUpRoFUsyaBZHQLR19bLlmvp1fZQoaAZoCWgPQwic3O9QFOgCwJSGlFKUaBVLMmgWR0C0dbfLDAJtdX2UKGgGaAloD0MI965BX3p74b+UhpRSlGgVSzJoFkdAtHckpI+W4XV9lChoBmgJaA9DCPt0PGagMuu/lIaUUpRoFUsyaBZHQLR22WiUPhB1fZQoaAZoCWgPQwjwbmWJznL6v5SGlFKUaBVLMmgWR0C0dqHTd+G5dX2UKGgGaAloD0MIoPtyZrsC8b+UhpRSlGgVSzJoFkdAtHZj6XSjQHV9lChoBmgJaA9DCPyPTIdOj/W/lIaUUpRoFUsyaBZHQLR3yw5/9YR1fZQoaAZoCWgPQwiUT49tGXD0v5SGlFKUaBVLMmgWR0C0d3/thNM5dX2UKGgGaAloD0MI+84vStBf7L+UhpRSlGgVSzJoFkdAtHdIal1r7HV9lChoBmgJaA9DCO8gdqbQ+fK/lIaUUpRoFUsyaBZHQLR3CmuDBdl1fZQoaAZoCWgPQwhKQEzChTzXv5SGlFKUaBVLMmgWR0C0eHJAhStOdX2UKGgGaAloD0MIuwuUFFiA6b+UhpRSlGgVSzJoFkdAtHgnDcdo4HV9lChoBmgJaA9DCEHw+PauQdy/lIaUUpRoFUsyaBZHQLR3719fCyh1fZQoaAZoCWgPQwgUs14M5UThv5SGlFKUaBVLMmgWR0C0d7GOdXkpdX2UKGgGaAloD0MIXFSLiGIy9L+UhpRSlGgVSzJoFkdAtHkaRRuTA3V9lChoBmgJaA9DCEW6n1OQH+u/lIaUUpRoFUsyaBZHQLR4zxxT8511fZQoaAZoCWgPQwhlj1AzpIrov5SGlFKUaBVLMmgWR0C0eJeNT987dX2UKGgGaAloD0MIuOS4UzqY87+UhpRSlGgVSzJoFkdAtHhZo8IRiHV9lChoBmgJaA9DCHMtWoC21ey/lIaUUpRoFUsyaBZHQLR5xVLSNOx1fZQoaAZoCWgPQwg3UrZI2o3nv5SGlFKUaBVLMmgWR0C0eXo99tuUdX2UKGgGaAloD0MIg8KgTKNJ47+UhpRSlGgVSzJoFkdAtHlCtRvWH3V9lChoBmgJaA9DCF3fh4OEqOe/lIaUUpRoFUsyaBZHQLR5BNG3F1l1fZQoaAZoCWgPQwjRlnMprir3v5SGlFKUaBVLMmgWR0C0emyZBsyjdX2UKGgGaAloD0MI0XXhB+fT4L+UhpRSlGgVSzJoFkdAtHohbQkX13V9lChoBmgJaA9DCNJyoIfatuW/lIaUUpRoFUsyaBZHQLR56di2Dxt1fZQoaAZoCWgPQwj9h/Tb14Huv5SGlFKUaBVLMmgWR0C0eav9DQZ5dX2UKGgGaAloD0MIPQytTs6Q9r+UhpRSlGgVSzJoFkdAtHtcQcxTKnV9lChoBmgJaA9DCLQc6KG2DfO/lIaUUpRoFUsyaBZHQLR7EapgkTp1fZQoaAZoCWgPQwhh3Xh3ZKzpv5SGlFKUaBVLMmgWR0C0etqK508vdX2UKGgGaAloD0MIJSL8i6Cx8b+UhpRSlGgVSzJoFkdAtHqdNtZV43V9lChoBmgJaA9DCMnIWdjTjuG/lIaUUpRoFUsyaBZHQLR8ew7kn1F1fZQoaAZoCWgPQwi8saAwKNPyv5SGlFKUaBVLMmgWR0C0fDB7RfF8dX2UKGgGaAloD0MIw4L7AQ+M57+UhpRSlGgVSzJoFkdAtHv5ekYXPHV9lChoBmgJaA9DCO2DLAsmfuW/lIaUUpRoFUsyaBZHQLR7vBfKISF1fZQoaAZoCWgPQwg7xhUXRyX9v5SGlFKUaBVLMmgWR0C0fZvPPcBVdX2UKGgGaAloD0MII8DpXbwf7r+UhpRSlGgVSzJoFkdAtH1RQpF1CHV9lChoBmgJaA9DCFb18jtN5uq/lIaUUpRoFUsyaBZHQLR9GlIVdop1fZQoaAZoCWgPQwjerwJ8t7n3v5SGlFKUaBVLMmgWR0C0fN0RBeHBdX2UKGgGaAloD0MI9KRMamgD9b+UhpRSlGgVSzJoFkdAtH7QMiKR+3V9lChoBmgJaA9DCG3jT1Q2rPi/lIaUUpRoFUsyaBZHQLR+heqJdjZ1fZQoaAZoCWgPQwiSBOEKKNT8v5SGlFKUaBVLMmgWR0C0fk9Qj2SMdX2UKGgGaAloD0MInlxTILNz9L+UhpRSlGgVSzJoFkdAtH4SJ0nw5XV9lChoBmgJaA9DCCYBamrZ2uG/lIaUUpRoFUsyaBZHQLSADKoAGSp1fZQoaAZoCWgPQwixbOaQ1IIAwJSGlFKUaBVLMmgWR0C0f8I593KTdX2UKGgGaAloD0MI/yCSIcdW67+UhpRSlGgVSzJoFkdAtH+LWlMyrXV9lChoBmgJaA9DCAWk/Q+wlvC/lIaUUpRoFUsyaBZHQLR/TjN6gNB1fZQoaAZoCWgPQwiyuWqeI3Lzv5SGlFKUaBVLMmgWR0C0gUGA08/2dX2UKGgGaAloD0MIv7uVJTpL7b+UhpRSlGgVSzJoFkdAtID3Ks+3Y3V9lChoBmgJaA9DCKKzzCIU2+G/lIaUUpRoFUsyaBZHQLSAwDs+mnB1fZQoaAZoCWgPQwjwhclUwejzv5SGlFKUaBVLMmgWR0C0gIMLjPv8dX2UKGgGaAloD0MIzjXM0Hgi7L+UhpRSlGgVSzJoFkdAtIH4DNhVl3V9lChoBmgJaA9DCKT6zi9KkPa/lIaUUpRoFUsyaBZHQLSBrOmBOHp1fZQoaAZoCWgPQwhgj4mUZhMCwJSGlFKUaBVLMmgWR0C0gXVgH/tIdX2UKGgGaAloD0MIBi0kYHT57r+UhpRSlGgVSzJoFkdAtIE3h2nsLXV9lChoBmgJaA9DCILmc+52XQDAlIaUUpRoFUsyaBZHQLSCpJEYwZh1fZQoaAZoCWgPQwh48X7cfnniv5SGlFKUaBVLMmgWR0C0gllqnFYMdX2UKGgGaAloD0MI9tA+VvBb6L+UhpRSlGgVSzJoFkdAtIIh11W8y3V9lChoBmgJaA9DCKJfWz/95+O/lIaUUpRoFUsyaBZHQLSB4/FBIFx1fZQoaAZoCWgPQwiN74tLVRr3v5SGlFKUaBVLMmgWR0C0g0nu3MINdX2UKGgGaAloD0MIq+rld5pMAsCUhpRSlGgVSzJoFkdAtIL+xgRbr3V9lChoBmgJaA9DCEGBd/LpsfS/lIaUUpRoFUsyaBZHQLSCxylvZRN1fZQoaAZoCWgPQwiOrtLddbbsv5SGlFKUaBVLMmgWR0C0gok56t1ZdX2UKGgGaAloD0MIg/dVuVB56b+UhpRSlGgVSzJoFkdAtIP2HdoFmnV9lChoBmgJaA9DCK2JBb6iG/C/lIaUUpRoFUsyaBZHQLSDqv3JxNt1fZQoaAZoCWgPQwh5zas6q0X6v5SGlFKUaBVLMmgWR0C0g3NxMnJDdX2UKGgGaAloD0MI2a873Xmi9b+UhpRSlGgVSzJoFkdAtIM1szl90HV9lChoBmgJaA9DCM43onvWdfG/lIaUUpRoFUsyaBZHQLSEoDmKZUl1fZQoaAZoCWgPQwhUO8PUlvryv5SGlFKUaBVLMmgWR0C0hFUWRA8kdX2UKGgGaAloD0MIjNtoAG+B77+UhpRSlGgVSzJoFkdAtIQdhnanJnV9lChoBmgJaA9DCGSWPQlsTuu/lIaUUpRoFUsyaBZHQLSD342CNCJ1fZQoaAZoCWgPQwg3xHjNqzrXv5SGlFKUaBVLMmgWR0C0hUfPX05EdX2UKGgGaAloD0MIAizy64dY4r+UhpRSlGgVSzJoFkdAtIT8rxy4nXV9lChoBmgJaA9DCH5zf/W47+u/lIaUUpRoFUsyaBZHQLSExR9gF5h1fZQoaAZoCWgPQwgtQrEVNC3nv5SGlFKUaBVLMmgWR0C0hIdDx9XtdX2UKGgGaAloD0MIDjLJyFlY+7+UhpRSlGgVSzJoFkdAtIX0QDmr83V9lChoBmgJaA9DCKeVQiCXOAPAlIaUUpRoFUsyaBZHQLSFqRxtHhF1fZQoaAZoCWgPQwjhzoWRXtTOv5SGlFKUaBVLMmgWR0C0hXGSdOIqdX2UKGgGaAloD0MIAihGlsyxBsCUhpRSlGgVSzJoFkdAtIUzwBo243V9lChoBmgJaA9DCEKZRpOLcfi/lIaUUpRoFUsyaBZHQLSGrw+t8u11fZQoaAZoCWgPQwimtWlsr4Xtv5SGlFKUaBVLMmgWR0C0hmQSJ0nxdX2UKGgGaAloD0MIjX40nDK3+L+UhpRSlGgVSzJoFkdAtIYtJK8L8nV9lChoBmgJaA9DCEa28/3UeOi/lIaUUpRoFUsyaBZHQLSF7z/6wdN1ZS4="
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 70000,
87
  "n_steps": 5,
88
  "gamma": 0.99,
89
  "gae_lambda": 1.0,
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6c63deef687560f8b7b562b565bf71b11b33f51373e61ace9c5bfcdbd5d2cc80
3
- size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:428306112375211f8fe228a0e15a0f0e051bb57fad7d4cb12d9470b400fa371d
3
+ size 44606
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c70135dcb3fbb8a6f6d2bbc2df2cefba072272e58ecaba75324085834cbb3e45
3
- size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf5593111b7719f6355291f8c0c4482570d1472218b2156f9292629770072a5f
3
+ size 45886
a2c-PandaReachDense-v2/system_info.txt CHANGED
@@ -2,6 +2,6 @@
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
- - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
 
2
  - Python: 3.9.16
3
  - Stable-Baselines3: 1.7.0
4
  - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Gym: 0.21.0
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2adfbe8a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2adfbe6e80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679649934679520702, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/SHDTPkhxwz1a9A0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo4l1vq70z7/Njli9RjVtv4Ffi7+z2ho/7ViNv//RcD+2S+a+LoZ/vgREIT/MKKM/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dprtIcNM+SHHDPVr0DT8TIAw8pnO4Ox9dpruUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]\n [0.412966 0.09543091 0.55450976]]", "desired_goal": "[[-0.23978285 -1.6246545 -0.05287056]\n [-0.92659414 -1.088852 0.6048996 ]\n [-1.1042763 0.9407043 -0.44979638]\n [-0.24953529 0.6299441 1.2746825 ]]", "observation": "[[ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]\n [ 0.412966 0.09543091 0.55450976 0.00855257 0.00562902 -0.00507702]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAY4pavdSAKr3ak4I+88N/PGTXV7yqbQk+LhETvrMVuD0Cinw+jyi+uvbOOD2hOHM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05335463 -0.04162677 0.25503427]\n [ 0.01561068 -0.01317391 0.1342074 ]\n [-0.14362022 0.08988514 0.24662021]\n [-0.00145079 0.04511925 0.23752071]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIucMmMnOBEsCUhpRSlIwBbJRLMowBdJRHQKgCl6iTMaF1fZQoaAZoCWgPQwjSx3xAoPP6v5SGlFKUaBVLMmgWR0CoAlpokAxSdX2UKGgGaAloD0MI2hoRjIMLC8CUhpRSlGgVSzJoFkdAqAIZ4yGi6HV9lChoBmgJaA9DCEvnw7MEiRjAlIaUUpRoFUsyaBZHQKgB2twJgLJ1fZQoaAZoCWgPQwj9E1ysqBEUwJSGlFKUaBVLMmgWR0CoA7gNoakzdX2UKGgGaAloD0MIsMbZdAQw8r+UhpRSlGgVSzJoFkdAqAN6vJRwZXV9lChoBmgJaA9DCP0ubM1WTiDAlIaUUpRoFUsyaBZHQKgDOiTt9hJ1fZQoaAZoCWgPQwizCTAsf/4HwJSGlFKUaBVLMmgWR0CoAvo0qH45dX2UKGgGaAloD0MImQ6dnnfjBsCUhpRSlGgVSzJoFkdAqATGALApKHV9lChoBmgJaA9DCGqIKvwZngPAlIaUUpRoFUsyaBZHQKgEiNd7fHh1fZQoaAZoCWgPQwjpEDgSaPALwJSGlFKUaBVLMmgWR0CoBEgPuogndX2UKGgGaAloD0MIcQLTad1G/L+UhpRSlGgVSzJoFkdAqAQIOBlMAXV9lChoBmgJaA9DCLWIKCZvoALAlIaUUpRoFUsyaBZHQKgF2apgkTp1fZQoaAZoCWgPQwiuga0SLM4KwJSGlFKUaBVLMmgWR0CoBZxrJr+HdX2UKGgGaAloD0MI+n3/5sX5EMCUhpRSlGgVSzJoFkdAqAVbjcVQAXV9lChoBmgJaA9DCFN7EW3HdA/AlIaUUpRoFUsyaBZHQKgFG7aIval1fZQoaAZoCWgPQwiWsaGb/cEDwJSGlFKUaBVLMmgWR0CoBupHy3CsdX2UKGgGaAloD0MIkPY/wFo1/r+UhpRSlGgVSzJoFkdAqAas7fYSQHV9lChoBmgJaA9DCAuXVdgMsATAlIaUUpRoFUsyaBZHQKgGbDjzZpV1fZQoaAZoCWgPQwiUoSqm0u8IwJSGlFKUaBVLMmgWR0CoBiwwj+rEdX2UKGgGaAloD0MIKPOPvkmzEsCUhpRSlGgVSzJoFkdAqAf9/DtPYXV9lChoBmgJaA9DCPSMfcnGw/W/lIaUUpRoFUsyaBZHQKgHwKx9oex1fZQoaAZoCWgPQwj8w5YeTXUAwJSGlFKUaBVLMmgWR0CoB3/6oESvdX2UKGgGaAloD0MIjuvf9ZmzCMCUhpRSlGgVSzJoFkdAqAc//zasZHV9lChoBmgJaA9DCJ7sZkY/+gvAlIaUUpRoFUsyaBZHQKgJDg4wRGt1fZQoaAZoCWgPQwgujzUjg1z9v5SGlFKUaBVLMmgWR0CoCND7IkqudX2UKGgGaAloD0MIL6cExCR8BMCUhpRSlGgVSzJoFkdAqAiQOOKfnXV9lChoBmgJaA9DCLwFEhQ/phHAlIaUUpRoFUsyaBZHQKgIUHM2WIJ1fZQoaAZoCWgPQwiKWwUx0LUDwJSGlFKUaBVLMmgWR0CoChmi5/b1dX2UKGgGaAloD0MI9dbAVgm2DcCUhpRSlGgVSzJoFkdAqAncbtJFs3V9lChoBmgJaA9DCEM7p1mgXfG/lIaUUpRoFUsyaBZHQKgJm9X9zfd1fZQoaAZoCWgPQwit30xMF6IBwJSGlFKUaBVLMmgWR0CoCVu/1xsEdX2UKGgGaAloD0MIPdNLjGXqE8CUhpRSlGgVSzJoFkdAqAsw0Q9RrXV9lChoBmgJaA9DCMqIC0Cj9AHAlIaUUpRoFUsyaBZHQKgK84BFNL11fZQoaAZoCWgPQwh24JwRpW0SwJSGlFKUaBVLMmgWR0CoCrLHEMspdX2UKGgGaAloD0MIByY3iqzlEcCUhpRSlGgVSzJoFkdAqApyxeLNwHV9lChoBmgJaA9DCENWt3pO+gPAlIaUUpRoFUsyaBZHQKgMRZ13dKx1fZQoaAZoCWgPQwgcmNwosjYCwJSGlFKUaBVLMmgWR0CoDAhsQ/X5dX2UKGgGaAloD0MIJXSXxFkxDMCUhpRSlGgVSzJoFkdAqAvHwgDA8HV9lChoBmgJaA9DCEPmyqDa0BPAlIaUUpRoFUsyaBZHQKgLh+4LCvZ1fZQoaAZoCWgPQwjImSZsP9n3v5SGlFKUaBVLMmgWR0CoDVmknCwbdX2UKGgGaAloD0MI1GGFWz6S+r+UhpRSlGgVSzJoFkdAqA0cfYBeX3V9lChoBmgJaA9DCPAYHvtZPBHAlIaUUpRoFUsyaBZHQKgM281XNkh1fZQoaAZoCWgPQwix4H7AA6MAwJSGlFKUaBVLMmgWR0CoDJvAGjbjdX2UKGgGaAloD0MI1QloImw4CcCUhpRSlGgVSzJoFkdAqA547gbZOHV9lChoBmgJaA9DCFcju9IyEvi/lIaUUpRoFUsyaBZHQKgOO9OARTV1fZQoaAZoCWgPQwjFq6xtigfwv5SGlFKUaBVLMmgWR0CoDftNrTH9dX2UKGgGaAloD0MI4lgXt9FgEMCUhpRSlGgVSzJoFkdAqA27ltCRfXV9lChoBmgJaA9DCOm2RC44IwfAlIaUUpRoFUsyaBZHQKgPmJ+lTFV1fZQoaAZoCWgPQwiNCMbBpaP9v5SGlFKUaBVLMmgWR0CoD1tbcGkfdX2UKGgGaAloD0MIWwndJXF2AsCUhpRSlGgVSzJoFkdAqA8avPkaM3V9lChoBmgJaA9DCKVPq+gPzQbAlIaUUpRoFUsyaBZHQKgO2ubI91V1fZQoaAZoCWgPQwix4emVsozpv5SGlFKUaBVLMmgWR0CoELYGUwBYdX2UKGgGaAloD0MIpKt0d509E8CUhpRSlGgVSzJoFkdAqBB4zxgAqHV9lChoBmgJaA9DCCs1e6AVGAzAlIaUUpRoFUsyaBZHQKgQOAskIHF1fZQoaAZoCWgPQwgId2fttmsHwJSGlFKUaBVLMmgWR0CoD/gCfYjCdX2UKGgGaAloD0MI75I4K6IWEsCUhpRSlGgVSzJoFkdAqBItMIu5BnV9lChoBmgJaA9DCDqVDABVvBDAlIaUUpRoFUsyaBZHQKgR8Suhbnp1fZQoaAZoCWgPQwhn1HyVfIwFwJSGlFKUaBVLMmgWR0CoEbGJN0vHdX2UKGgGaAloD0MIvHZpw2H5EcCUhpRSlGgVSzJoFkdAqBFyliz9j3V9lChoBmgJaA9DCNVbA1slmPy/lIaUUpRoFUsyaBZHQKgUA6unuRd1fZQoaAZoCWgPQwjSGRh5WfMTwJSGlFKUaBVLMmgWR0CoE8dJSR8udX2UKGgGaAloD0MI6Nms+lwNGsCUhpRSlGgVSzJoFkdAqBOHjuKGcnV9lChoBmgJaA9DCE1KQbeXlALAlIaUUpRoFUsyaBZHQKgTSG5+Ytx1fZQoaAZoCWgPQwiPiZRm8/gSwJSGlFKUaBVLMmgWR0CoFcfwqiGndX2UKGgGaAloD0MIF0Z6UbufBsCUhpRSlGgVSzJoFkdAqBWMFY+0PnV9lChoBmgJaA9DCGA97lutwxTAlIaUUpRoFUsyaBZHQKgVTFa0Qbx1fZQoaAZoCWgPQwg3cXK/Q3EIwJSGlFKUaBVLMmgWR0CoFQ2Bas6rdX2UKGgGaAloD0MIN8e5TbhX87+UhpRSlGgVSzJoFkdAqBe8Yl6Z6XV9lChoBmgJaA9DCEbRAx+D5RfAlIaUUpRoFUsyaBZHQKgXgBWgezV1fZQoaAZoCWgPQwj4GRcOhAQHwJSGlFKUaBVLMmgWR0CoF0CA2AG0dX2UKGgGaAloD0MILbMIxVYQDcCUhpRSlGgVSzJoFkdAqBcBdQfp2XV9lChoBmgJaA9DCDjYmxiSkwfAlIaUUpRoFUsyaBZHQKgZpoYekpJ1fZQoaAZoCWgPQwgYsU8AxQgHwJSGlFKUaBVLMmgWR0CoGWpGOMl1dX2UKGgGaAloD0MILXx9rUtN+L+UhpRSlGgVSzJoFkdAqBkqshgVoHV9lChoBmgJaA9DCMxAZfz7zA3AlIaUUpRoFUsyaBZHQKgY6+wC8vp1fZQoaAZoCWgPQwiEm4wqw/gHwJSGlFKUaBVLMmgWR0CoG59Mbm2cdX2UKGgGaAloD0MIumWH+IdNDsCUhpRSlGgVSzJoFkdAqBtjGFSKnHV9lChoBmgJaA9DCHDurx73Le6/lIaUUpRoFUsyaBZHQKgbIyuZCv51fZQoaAZoCWgPQwj1LAjlfXwLwJSGlFKUaBVLMmgWR0CoGuQQlKK6dX2UKGgGaAloD0MIBMdl3NSA97+UhpRSlGgVSzJoFkdAqBz4YxcmjXV9lChoBmgJaA9DCMPWbOUlfw7AlIaUUpRoFUsyaBZHQKgcuyzHCGh1fZQoaAZoCWgPQwjAJQD/lIoMwJSGlFKUaBVLMmgWR0CoHHpWV/tqdX2UKGgGaAloD0MIdPBMaJJoFMCUhpRSlGgVSzJoFkdAqBw6wbEP2HV9lChoBmgJaA9DCLyuX7Ab9gvAlIaUUpRoFUsyaBZHQKgeCqPOpsJ1fZQoaAZoCWgPQwgabVUS2QcMwJSGlFKUaBVLMmgWR0CoHc2DpTuOdX2UKGgGaAloD0MI1lJA2v8AB8CUhpRSlGgVSzJoFkdAqB2M+LWI43V9lChoBmgJaA9DCApnt5bJQBXAlIaUUpRoFUsyaBZHQKgdTTDO1OV1fZQoaAZoCWgPQwhm22lrRDDwv5SGlFKUaBVLMmgWR0CoHyGzru6VdX2UKGgGaAloD0MI8MLWbOVFD8CUhpRSlGgVSzJoFkdAqB7keQuEmXV9lChoBmgJaA9DCMzQeCKIcwrAlIaUUpRoFUsyaBZHQKgeo8OCoTB1fZQoaAZoCWgPQwiXkXpP5fQGwJSGlFKUaBVLMmgWR0CoHmPZAY51dX2UKGgGaAloD0MIxofZy7ZTCMCUhpRSlGgVSzJoFkdAqCA6IDYAbXV9lChoBmgJaA9DCBTnqKPj+hLAlIaUUpRoFUsyaBZHQKgf/Pqs2eh1fZQoaAZoCWgPQwg26Etvf/4QwJSGlFKUaBVLMmgWR0CoH7xe1KGtdX2UKGgGaAloD0MILGaEtwfh8L+UhpRSlGgVSzJoFkdAqB98i2UjcHV9lChoBmgJaA9DCCXK3lLOlxDAlIaUUpRoFUsyaBZHQKghU52hZhd1fZQoaAZoCWgPQwiZEkn0Mkr3v5SGlFKUaBVLMmgWR0CoIRaKtPpIdX2UKGgGaAloD0MIm49rQ8X4DsCUhpRSlGgVSzJoFkdAqCDVzjm0V3V9lChoBmgJaA9DCBmRKLSsWwLAlIaUUpRoFUsyaBZHQKgglfCyhSN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f02db45ba60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f02db462180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1400000, "_total_timesteps": 1400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679655706342106438, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+qY3DPtDg7L3o3MM+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkdzqvmt9cL4UBTY9fm1wviGiUT8Kl5a/hcGlvtNRyb+jXxs/hVOyP8KO/D1os9y+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACpjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzypjcM+0ODsvejcwz4IW+E8BzUOvOl+VzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]\n [ 0.38194016 -0.11566317 0.38254476]]", "desired_goal": "[[-0.45871404 -0.23485343 0.04443844]\n [-0.23479268 0.81888014 -1.1764843 ]\n [-0.32374206 -1.5728096 0.60692805]\n [ 1.3931738 0.12331916 -0.43105626]]", "observation": "[[ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]\n [ 0.38194016 -0.11566317 0.38254476 0.02750923 -0.00867963 0.01315282]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7r2kPIWYFb77WIw+u9KZPcTbnz2TuZs8Lge3PSoa4z1IE5c+mPKGvdCOLb2YowU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0201101 -0.14608963 0.27411637]\n [ 0.07510897 0.07805589 0.01900939]\n [ 0.08936916 0.11088975 0.29506898]\n [-0.0658924 -0.04237252 0.13050687]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxXHg1XLn9b+UhpRSlIwBbJRLMowBdJRHQLRz0Q5myxB1fZQoaAZoCWgPQwjWxW00gHf6v5SGlFKUaBVLMmgWR0C0c4Xv+fh/dX2UKGgGaAloD0MIKGTnbWy28b+UhpRSlGgVSzJoFkdAtHNOV0Lc9HV9lChoBmgJaA9DCEMaFTjZhuq/lIaUUpRoFUsyaBZHQLRzEGyHEdh1fZQoaAZoCWgPQwic4Jumz071v5SGlFKUaBVLMmgWR0C0dHlPacqfdX2UKGgGaAloD0MIUfhsHRzs7L+UhpRSlGgVSzJoFkdAtHQuNwR5DHV9lChoBmgJaA9DCNP1RNeFH+y/lIaUUpRoFUsyaBZHQLRz9qh11W91fZQoaAZoCWgPQwiLGeHtQUj6v5SGlFKUaBVLMmgWR0C0c7jLr5ZbdX2UKGgGaAloD0MI5IV0eAjj7b+UhpRSlGgVSzJoFkdAtHUj28IzFnV9lChoBmgJaA9DCM0+j1GeefC/lIaUUpRoFUsyaBZHQLR02L+PzWh1fZQoaAZoCWgPQwh+5UF6ipzkv5SGlFKUaBVLMmgWR0C0dKEyLyc1dX2UKGgGaAloD0MICBwJNNgU87+UhpRSlGgVSzJoFkdAtHRjUkOZs3V9lChoBmgJaA9DCFiut81USPO/lIaUUpRoFUsyaBZHQLR1zlv60pp1fZQoaAZoCWgPQwjus8pMaV0AwJSGlFKUaBVLMmgWR0C0dYM8s+V1dX2UKGgGaAloD0MI965BX3q78r+UhpRSlGgVSzJoFkdAtHVLqcEvCnV9lChoBmgJaA9DCIkLQKN06fm/lIaUUpRoFUsyaBZHQLR1DcWCVbB1fZQoaAZoCWgPQwi/tRMlIZHqv5SGlFKUaBVLMmgWR0C0dnhkEs8QdX2UKGgGaAloD0MI8uzyrQ9r8L+UhpRSlGgVSzJoFkdAtHYtSwW30HV9lChoBmgJaA9DCEsFFVW/UuS/lIaUUpRoFUsyaBZHQLR19bLlmvp1fZQoaAZoCWgPQwic3O9QFOgCwJSGlFKUaBVLMmgWR0C0dbfLDAJtdX2UKGgGaAloD0MI965BX3p74b+UhpRSlGgVSzJoFkdAtHckpI+W4XV9lChoBmgJaA9DCPt0PGagMuu/lIaUUpRoFUsyaBZHQLR22WiUPhB1fZQoaAZoCWgPQwjwbmWJznL6v5SGlFKUaBVLMmgWR0C0dqHTd+G5dX2UKGgGaAloD0MIoPtyZrsC8b+UhpRSlGgVSzJoFkdAtHZj6XSjQHV9lChoBmgJaA9DCPyPTIdOj/W/lIaUUpRoFUsyaBZHQLR3yw5/9YR1fZQoaAZoCWgPQwiUT49tGXD0v5SGlFKUaBVLMmgWR0C0d3/thNM5dX2UKGgGaAloD0MI+84vStBf7L+UhpRSlGgVSzJoFkdAtHdIal1r7HV9lChoBmgJaA9DCO8gdqbQ+fK/lIaUUpRoFUsyaBZHQLR3CmuDBdl1fZQoaAZoCWgPQwhKQEzChTzXv5SGlFKUaBVLMmgWR0C0eHJAhStOdX2UKGgGaAloD0MIuwuUFFiA6b+UhpRSlGgVSzJoFkdAtHgnDcdo4HV9lChoBmgJaA9DCEHw+PauQdy/lIaUUpRoFUsyaBZHQLR3719fCyh1fZQoaAZoCWgPQwgUs14M5UThv5SGlFKUaBVLMmgWR0C0d7GOdXkpdX2UKGgGaAloD0MIXFSLiGIy9L+UhpRSlGgVSzJoFkdAtHkaRRuTA3V9lChoBmgJaA9DCEW6n1OQH+u/lIaUUpRoFUsyaBZHQLR4zxxT8511fZQoaAZoCWgPQwhlj1AzpIrov5SGlFKUaBVLMmgWR0C0eJeNT987dX2UKGgGaAloD0MIuOS4UzqY87+UhpRSlGgVSzJoFkdAtHhZo8IRiHV9lChoBmgJaA9DCHMtWoC21ey/lIaUUpRoFUsyaBZHQLR5xVLSNOx1fZQoaAZoCWgPQwg3UrZI2o3nv5SGlFKUaBVLMmgWR0C0eXo99tuUdX2UKGgGaAloD0MIg8KgTKNJ47+UhpRSlGgVSzJoFkdAtHlCtRvWH3V9lChoBmgJaA9DCF3fh4OEqOe/lIaUUpRoFUsyaBZHQLR5BNG3F1l1fZQoaAZoCWgPQwjRlnMprir3v5SGlFKUaBVLMmgWR0C0emyZBsyjdX2UKGgGaAloD0MI0XXhB+fT4L+UhpRSlGgVSzJoFkdAtHohbQkX13V9lChoBmgJaA9DCNJyoIfatuW/lIaUUpRoFUsyaBZHQLR56di2Dxt1fZQoaAZoCWgPQwj9h/Tb14Huv5SGlFKUaBVLMmgWR0C0eav9DQZ5dX2UKGgGaAloD0MIPQytTs6Q9r+UhpRSlGgVSzJoFkdAtHtcQcxTKnV9lChoBmgJaA9DCLQc6KG2DfO/lIaUUpRoFUsyaBZHQLR7EapgkTp1fZQoaAZoCWgPQwhh3Xh3ZKzpv5SGlFKUaBVLMmgWR0C0etqK508vdX2UKGgGaAloD0MIJSL8i6Cx8b+UhpRSlGgVSzJoFkdAtHqdNtZV43V9lChoBmgJaA9DCMnIWdjTjuG/lIaUUpRoFUsyaBZHQLR8ew7kn1F1fZQoaAZoCWgPQwi8saAwKNPyv5SGlFKUaBVLMmgWR0C0fDB7RfF8dX2UKGgGaAloD0MIw4L7AQ+M57+UhpRSlGgVSzJoFkdAtHv5ekYXPHV9lChoBmgJaA9DCO2DLAsmfuW/lIaUUpRoFUsyaBZHQLR7vBfKISF1fZQoaAZoCWgPQwg7xhUXRyX9v5SGlFKUaBVLMmgWR0C0fZvPPcBVdX2UKGgGaAloD0MII8DpXbwf7r+UhpRSlGgVSzJoFkdAtH1RQpF1CHV9lChoBmgJaA9DCFb18jtN5uq/lIaUUpRoFUsyaBZHQLR9GlIVdop1fZQoaAZoCWgPQwjerwJ8t7n3v5SGlFKUaBVLMmgWR0C0fN0RBeHBdX2UKGgGaAloD0MI9KRMamgD9b+UhpRSlGgVSzJoFkdAtH7QMiKR+3V9lChoBmgJaA9DCG3jT1Q2rPi/lIaUUpRoFUsyaBZHQLR+heqJdjZ1fZQoaAZoCWgPQwiSBOEKKNT8v5SGlFKUaBVLMmgWR0C0fk9Qj2SMdX2UKGgGaAloD0MInlxTILNz9L+UhpRSlGgVSzJoFkdAtH4SJ0nw5XV9lChoBmgJaA9DCCYBamrZ2uG/lIaUUpRoFUsyaBZHQLSADKoAGSp1fZQoaAZoCWgPQwixbOaQ1IIAwJSGlFKUaBVLMmgWR0C0f8I593KTdX2UKGgGaAloD0MI/yCSIcdW67+UhpRSlGgVSzJoFkdAtH+LWlMyrXV9lChoBmgJaA9DCAWk/Q+wlvC/lIaUUpRoFUsyaBZHQLR/TjN6gNB1fZQoaAZoCWgPQwiyuWqeI3Lzv5SGlFKUaBVLMmgWR0C0gUGA08/2dX2UKGgGaAloD0MIv7uVJTpL7b+UhpRSlGgVSzJoFkdAtID3Ks+3Y3V9lChoBmgJaA9DCKKzzCIU2+G/lIaUUpRoFUsyaBZHQLSAwDs+mnB1fZQoaAZoCWgPQwjwhclUwejzv5SGlFKUaBVLMmgWR0C0gIMLjPv8dX2UKGgGaAloD0MIzjXM0Hgi7L+UhpRSlGgVSzJoFkdAtIH4DNhVl3V9lChoBmgJaA9DCKT6zi9KkPa/lIaUUpRoFUsyaBZHQLSBrOmBOHp1fZQoaAZoCWgPQwhgj4mUZhMCwJSGlFKUaBVLMmgWR0C0gXVgH/tIdX2UKGgGaAloD0MIBi0kYHT57r+UhpRSlGgVSzJoFkdAtIE3h2nsLXV9lChoBmgJaA9DCILmc+52XQDAlIaUUpRoFUsyaBZHQLSCpJEYwZh1fZQoaAZoCWgPQwh48X7cfnniv5SGlFKUaBVLMmgWR0C0gllqnFYMdX2UKGgGaAloD0MI9tA+VvBb6L+UhpRSlGgVSzJoFkdAtIIh11W8y3V9lChoBmgJaA9DCKJfWz/95+O/lIaUUpRoFUsyaBZHQLSB4/FBIFx1fZQoaAZoCWgPQwiN74tLVRr3v5SGlFKUaBVLMmgWR0C0g0nu3MINdX2UKGgGaAloD0MIq+rld5pMAsCUhpRSlGgVSzJoFkdAtIL+xgRbr3V9lChoBmgJaA9DCEGBd/LpsfS/lIaUUpRoFUsyaBZHQLSCxylvZRN1fZQoaAZoCWgPQwiOrtLddbbsv5SGlFKUaBVLMmgWR0C0gok56t1ZdX2UKGgGaAloD0MIg/dVuVB56b+UhpRSlGgVSzJoFkdAtIP2HdoFmnV9lChoBmgJaA9DCK2JBb6iG/C/lIaUUpRoFUsyaBZHQLSDqv3JxNt1fZQoaAZoCWgPQwh5zas6q0X6v5SGlFKUaBVLMmgWR0C0g3NxMnJDdX2UKGgGaAloD0MI2a873Xmi9b+UhpRSlGgVSzJoFkdAtIM1szl90HV9lChoBmgJaA9DCM43onvWdfG/lIaUUpRoFUsyaBZHQLSEoDmKZUl1fZQoaAZoCWgPQwhUO8PUlvryv5SGlFKUaBVLMmgWR0C0hFUWRA8kdX2UKGgGaAloD0MIjNtoAG+B77+UhpRSlGgVSzJoFkdAtIQdhnanJnV9lChoBmgJaA9DCGSWPQlsTuu/lIaUUpRoFUsyaBZHQLSD342CNCJ1fZQoaAZoCWgPQwg3xHjNqzrXv5SGlFKUaBVLMmgWR0C0hUfPX05EdX2UKGgGaAloD0MIAizy64dY4r+UhpRSlGgVSzJoFkdAtIT8rxy4nXV9lChoBmgJaA9DCH5zf/W47+u/lIaUUpRoFUsyaBZHQLSExR9gF5h1fZQoaAZoCWgPQwgtQrEVNC3nv5SGlFKUaBVLMmgWR0C0hIdDx9XtdX2UKGgGaAloD0MIDjLJyFlY+7+UhpRSlGgVSzJoFkdAtIX0QDmr83V9lChoBmgJaA9DCKeVQiCXOAPAlIaUUpRoFUsyaBZHQLSFqRxtHhF1fZQoaAZoCWgPQwjhzoWRXtTOv5SGlFKUaBVLMmgWR0C0hXGSdOIqdX2UKGgGaAloD0MIAihGlsyxBsCUhpRSlGgVSzJoFkdAtIUzwBo243V9lChoBmgJaA9DCEKZRpOLcfi/lIaUUpRoFUsyaBZHQLSGrw+t8u11fZQoaAZoCWgPQwimtWlsr4Xtv5SGlFKUaBVLMmgWR0C0hmQSJ0nxdX2UKGgGaAloD0MIjX40nDK3+L+UhpRSlGgVSzJoFkdAtIYtJK8L8nV9lChoBmgJaA9DCEa28/3UeOi/lIaUUpRoFUsyaBZHQLSF7z/6wdN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.8880581250414252, "std_reward": 0.840197448777884, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T10:28:15.523789"}
 
1
+ {"mean_reward": -1.2514670733362436, "std_reward": 0.6042359849310357, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T12:37:03.228479"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:75497f6d9f20d114338ec012f3596b80e231b0eeafb8c5e83999a8a070f7e9ff
3
  size 3056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f42fe9cd382f12ac6e6105ec50cb20e7114c9c2e6cb4a513f9a5dd54476acdcd
3
  size 3056