SE6446 commited on
Commit
da0ef01
1 Parent(s): 5ceb44c

Upload 2 files

Browse files
Files changed (2) hide show
  1. configuration_kanllama.py +192 -0
  2. modeling_kanllama.py +347 -0
configuration_kanllama.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """LLaMA model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class KANLlamaConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the LLaMA-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`LlamaModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens,
63
+ Llama 2 up to 4096, CodeLlama up to 16384.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
80
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
81
+ issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
88
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
89
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
90
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
91
+ these scaling strategies behave:
92
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
93
+ experimental feature, subject to breaking API changes in future versions.
94
+ attention_bias (`bool`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+ mlp_bias (`bool`, *optional*, defaults to `False`):
99
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
100
+
101
+ ```python
102
+ >>> from transformers import LlamaModel, LlamaConfig
103
+
104
+ >>> # Initializing a LLaMA llama-7b style configuration
105
+ >>> configuration = LlamaConfig()
106
+
107
+ >>> # Initializing a model from the llama-7b style configuration
108
+ >>> model = LlamaModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "llama"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ mlp_bias=False,
140
+ **kwargs,
141
+ ):
142
+ self.vocab_size = vocab_size
143
+ self.max_position_embeddings = max_position_embeddings
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ # for backward compatibility
150
+ if num_key_value_heads is None:
151
+ num_key_value_heads = num_attention_heads
152
+
153
+ self.num_key_value_heads = num_key_value_heads
154
+ self.hidden_act = hidden_act
155
+ self.initializer_range = initializer_range
156
+ self.rms_norm_eps = rms_norm_eps
157
+ self.pretraining_tp = pretraining_tp
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self._rope_scaling_validation()
162
+ self.attention_bias = attention_bias
163
+ self.attention_dropout = attention_dropout
164
+ self.mlp_bias = mlp_bias
165
+
166
+ super().__init__(
167
+ pad_token_id=pad_token_id,
168
+ bos_token_id=bos_token_id,
169
+ eos_token_id=eos_token_id,
170
+ tie_word_embeddings=tie_word_embeddings,
171
+ **kwargs,
172
+ )
173
+
174
+ def _rope_scaling_validation(self):
175
+ """
176
+ Validate the `rope_scaling` configuration.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
182
+ raise ValueError(
183
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get("type", None)
186
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
187
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
188
+ raise ValueError(
189
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
190
+ )
191
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
192
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
modeling_kanllama.py ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import math
4
+
5
+ from .configuration_kanllama import KANLlamaConfig
6
+
7
+ ######
8
+ # KAN and KANLinear are take from efficient KAN
9
+ # https://github.com/Blealtan/efficient-kan
10
+ ######
11
+
12
+ class KANLinear(torch.nn.Module):
13
+ def __init__(
14
+ self,
15
+ in_features,
16
+ out_features,
17
+ grid_size=5,
18
+ spline_order=3,
19
+ scale_noise=0.1,
20
+ scale_base=1.0,
21
+ scale_spline=1.0,
22
+ enable_standalone_scale_spline=True,
23
+ base_activation=torch.nn.SiLU,
24
+ grid_eps=0.02,
25
+ grid_range=[-1, 1],
26
+ ):
27
+ super(KANLinear, self).__init__()
28
+ self.in_features = in_features
29
+ self.out_features = out_features
30
+ self.grid_size = grid_size
31
+ self.spline_order = spline_order
32
+
33
+ h = (grid_range[1] - grid_range[0]) / grid_size
34
+ grid = (
35
+ (
36
+ torch.arange(-spline_order, grid_size + spline_order + 1) * h
37
+ + grid_range[0]
38
+ )
39
+ .expand(in_features, -1)
40
+ .contiguous()
41
+ )
42
+ self.register_buffer("grid", grid)
43
+
44
+ self.base_weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
45
+ self.spline_weight = torch.nn.Parameter(
46
+ torch.Tensor(out_features, in_features, grid_size + spline_order)
47
+ )
48
+ if enable_standalone_scale_spline:
49
+ self.spline_scaler = torch.nn.Parameter(
50
+ torch.Tensor(out_features, in_features)
51
+ )
52
+
53
+ self.scale_noise = scale_noise
54
+ self.scale_base = scale_base
55
+ self.scale_spline = scale_spline
56
+ self.enable_standalone_scale_spline = enable_standalone_scale_spline
57
+ self.base_activation = base_activation()
58
+ self.grid_eps = grid_eps
59
+
60
+ self.reset_parameters()
61
+
62
+ def reset_parameters(self):
63
+ torch.nn.init.kaiming_uniform_(self.base_weight, a=math.sqrt(5) * self.scale_base)
64
+ with torch.no_grad():
65
+ noise = (
66
+ (
67
+ torch.rand(self.grid_size + 1, self.in_features, self.out_features)
68
+ - 1 / 2
69
+ )
70
+ * self.scale_noise
71
+ / self.grid_size
72
+ )
73
+ self.spline_weight.data.copy_(
74
+ (self.scale_spline if not self.enable_standalone_scale_spline else 1.0)
75
+ * self.curve2coeff(
76
+ self.grid.T[self.spline_order : -self.spline_order],
77
+ noise,
78
+ )
79
+ )
80
+ if self.enable_standalone_scale_spline:
81
+ # torch.nn.init.constant_(self.spline_scaler, self.scale_spline)
82
+ torch.nn.init.kaiming_uniform_(self.spline_scaler, a=math.sqrt(5) * self.scale_spline)
83
+
84
+ def b_splines(self, x: torch.Tensor):
85
+ """
86
+ Compute the B-spline bases for the given input tensor.
87
+
88
+ Args:
89
+ x (torch.Tensor): Input tensor of shape (batch_size, in_features).
90
+
91
+ Returns:
92
+ torch.Tensor: B-spline bases tensor of shape (batch_size, in_features, grid_size + spline_order).
93
+ """
94
+ assert x.dim() == 2 and x.size(1) == self.in_features
95
+
96
+ grid: torch.Tensor = (
97
+ self.grid
98
+ ) # (in_features, grid_size + 2 * spline_order + 1)
99
+ x = x.unsqueeze(-1)
100
+ bases = ((x >= grid[:, :-1]) & (x < grid[:, 1:])).to(x.dtype)
101
+ for k in range(1, self.spline_order + 1):
102
+ bases = (
103
+ (x - grid[:, : -(k + 1)])
104
+ / (grid[:, k:-1] - grid[:, : -(k + 1)])
105
+ * bases[:, :, :-1]
106
+ ) + (
107
+ (grid[:, k + 1 :] - x)
108
+ / (grid[:, k + 1 :] - grid[:, 1:(-k)])
109
+ * bases[:, :, 1:]
110
+ )
111
+
112
+ assert bases.size() == (
113
+ x.size(0),
114
+ self.in_features,
115
+ self.grid_size + self.spline_order,
116
+ )
117
+ return bases.contiguous()
118
+
119
+ def curve2coeff(self, x: torch.Tensor, y: torch.Tensor):
120
+ """
121
+ Compute the coefficients of the curve that interpolates the given points.
122
+
123
+ Args:
124
+ x (torch.Tensor): Input tensor of shape (batch_size, in_features).
125
+ y (torch.Tensor): Output tensor of shape (batch_size, in_features, out_features).
126
+
127
+ Returns:
128
+ torch.Tensor: Coefficients tensor of shape (out_features, in_features, grid_size + spline_order).
129
+ """
130
+ assert x.dim() == 2 and x.size(1) == self.in_features
131
+ assert y.size() == (x.size(0), self.in_features, self.out_features)
132
+
133
+ A = self.b_splines(x).transpose(
134
+ 0, 1
135
+ ) # (in_features, batch_size, grid_size + spline_order)
136
+ B = y.transpose(0, 1) # (in_features, batch_size, out_features)
137
+ solution = torch.linalg.lstsq(
138
+ A, B
139
+ ).solution # (in_features, grid_size + spline_order, out_features)
140
+ result = solution.permute(
141
+ 2, 0, 1
142
+ ) # (out_features, in_features, grid_size + spline_order)
143
+
144
+ assert result.size() == (
145
+ self.out_features,
146
+ self.in_features,
147
+ self.grid_size + self.spline_order,
148
+ )
149
+ return result.contiguous()
150
+
151
+ @property
152
+ def scaled_spline_weight(self):
153
+ return self.spline_weight * (
154
+ self.spline_scaler.unsqueeze(-1)
155
+ if self.enable_standalone_scale_spline
156
+ else 1.0
157
+ )
158
+
159
+ def forward(self, x: torch.Tensor):
160
+ assert x.size(-1) == self.in_features
161
+ original_shape = x.shape
162
+ x = x.view(-1, self.in_features)
163
+
164
+ base_output = F.linear(self.base_activation(x), self.base_weight)
165
+ spline_output = F.linear(
166
+ self.b_splines(x).view(x.size(0), -1),
167
+ self.scaled_spline_weight.view(self.out_features, -1),
168
+ )
169
+ output = base_output + spline_output
170
+
171
+ output = output.view(*original_shape[:-1], self.out_features)
172
+ return output
173
+
174
+ @torch.no_grad()
175
+ def update_grid(self, x: torch.Tensor, margin=0.01):
176
+ assert x.dim() == 2 and x.size(1) == self.in_features
177
+ batch = x.size(0)
178
+
179
+ splines = self.b_splines(x) # (batch, in, coeff)
180
+ splines = splines.permute(1, 0, 2) # (in, batch, coeff)
181
+ orig_coeff = self.scaled_spline_weight # (out, in, coeff)
182
+ orig_coeff = orig_coeff.permute(1, 2, 0) # (in, coeff, out)
183
+ unreduced_spline_output = torch.bmm(splines, orig_coeff) # (in, batch, out)
184
+ unreduced_spline_output = unreduced_spline_output.permute(
185
+ 1, 0, 2
186
+ ) # (batch, in, out)
187
+
188
+ # sort each channel individually to collect data distribution
189
+ x_sorted = torch.sort(x, dim=0)[0]
190
+ grid_adaptive = x_sorted[
191
+ torch.linspace(
192
+ 0, batch - 1, self.grid_size + 1, dtype=torch.int64, device=x.device
193
+ )
194
+ ]
195
+
196
+ uniform_step = (x_sorted[-1] - x_sorted[0] + 2 * margin) / self.grid_size
197
+ grid_uniform = (
198
+ torch.arange(
199
+ self.grid_size + 1, dtype=torch.float32, device=x.device
200
+ ).unsqueeze(1)
201
+ * uniform_step
202
+ + x_sorted[0]
203
+ - margin
204
+ )
205
+
206
+ grid = self.grid_eps * grid_uniform + (1 - self.grid_eps) * grid_adaptive
207
+ grid = torch.concatenate(
208
+ [
209
+ grid[:1]
210
+ - uniform_step
211
+ * torch.arange(self.spline_order, 0, -1, device=x.device).unsqueeze(1),
212
+ grid,
213
+ grid[-1:]
214
+ + uniform_step
215
+ * torch.arange(1, self.spline_order + 1, device=x.device).unsqueeze(1),
216
+ ],
217
+ dim=0,
218
+ )
219
+
220
+ self.grid.copy_(grid.T)
221
+ self.spline_weight.data.copy_(self.curve2coeff(x, unreduced_spline_output))
222
+
223
+ def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
224
+ """
225
+ Compute the regularization loss.
226
+
227
+ This is a dumb simulation of the original L1 regularization as stated in the
228
+ paper, since the original one requires computing absolutes and entropy from the
229
+ expanded (batch, in_features, out_features) intermediate tensor, which is hidden
230
+ behind the F.linear function if we want an memory efficient implementation.
231
+
232
+ The L1 regularization is now computed as mean absolute value of the spline
233
+ weights. The authors implementation also includes this term in addition to the
234
+ sample-based regularization.
235
+ """
236
+ l1_fake = self.spline_weight.abs().mean(-1)
237
+ regularization_loss_activation = l1_fake.sum()
238
+ p = l1_fake / regularization_loss_activation
239
+ regularization_loss_entropy = -torch.sum(p * p.log())
240
+ return (
241
+ regularize_activation * regularization_loss_activation
242
+ + regularize_entropy * regularization_loss_entropy
243
+ )
244
+
245
+
246
+ class KAN(torch.nn.Module):
247
+ def __init__(
248
+ self,
249
+ layers_hidden,
250
+ grid_size=5,
251
+ spline_order=3,
252
+ scale_noise=0.1,
253
+ scale_base=1.0,
254
+ scale_spline=1.0,
255
+ base_activation=torch.nn.SiLU,
256
+ grid_eps=0.02,
257
+ grid_range=[-1, 1],
258
+ ):
259
+ super(KAN, self).__init__()
260
+ self.grid_size = grid_size
261
+ self.spline_order = spline_order
262
+
263
+ self.layers = torch.nn.ModuleList()
264
+ for in_features, out_features in zip(layers_hidden, layers_hidden[1:]):
265
+ self.layers.append(
266
+ KANLinear(
267
+ in_features,
268
+ out_features,
269
+ grid_size=grid_size,
270
+ spline_order=spline_order,
271
+ scale_noise=scale_noise,
272
+ scale_base=scale_base,
273
+ scale_spline=scale_spline,
274
+ base_activation=base_activation,
275
+ grid_eps=grid_eps,
276
+ grid_range=grid_range,
277
+ )
278
+ )
279
+
280
+ def forward(self, x: torch.Tensor, update_grid=False):
281
+ for layer in self.layers:
282
+ if update_grid:
283
+ layer.update_grid(x)
284
+ x = layer(x)
285
+ return x
286
+
287
+ def regularization_loss(self, regularize_activation=1.0, regularize_entropy=1.0):
288
+ return sum(
289
+ layer.regularization_loss(regularize_activation, regularize_entropy)
290
+ for layer in self.layers
291
+ )
292
+
293
+ """## Build Kanformer"""
294
+
295
+ from transformers import AutoConfig, AutoTokenizer, AutoModel
296
+
297
+ from transformers.models.llama.modeling_llama import *
298
+
299
+ class KANLlamaAttention(LlamaAttention):
300
+ def __init__(self, config, **args):
301
+ super().__init__(config, **args)
302
+ head_dim = config.hidden_size // config.num_attention_heads
303
+ self.q_proj = KANLinear(config.hidden_size, config.num_attention_heads * head_dim)
304
+ self.k_proj = KANLinear(config.hidden_size, config.num_key_value_heads * head_dim)
305
+ self.v_proj = KANLinear(config.hidden_size, config.num_key_value_heads * head_dim)
306
+ self.o_proj = KANLinear(config.hidden_size, config.hidden_size)
307
+ self._init_rope()
308
+
309
+ class KANLlamaDecoderLayer(LlamaDecoderLayer):
310
+ def __init__(self,config, layer_idx):
311
+ super().__init__(config, layer_idx)
312
+ self.hidden_size = config.hidden_size
313
+
314
+ self.self_attn = KANLlamaAttention(config=config, layer_idx=layer_idx)
315
+ self.mlp = KAN([config.hidden_size,config.intermediate_size,config.intermediate_size,config.hidden_size])
316
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
317
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
318
+
319
+ class KANLlamaModel(LlamaModel):
320
+ config_class = KANLlamaConfig
321
+ def __init__(self, config):
322
+ super().__init__(config)
323
+ self.layers = nn.ModuleList(
324
+ [KANLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
325
+ )
326
+
327
+ class KANLlamaForSequenceClassification(LlamaForSequenceClassification):
328
+ config_class = KANLlamaConfig
329
+ def __init__(self, config):
330
+ super().__init__(config)
331
+ self.num_labels = config.num_labels
332
+ self.model = KANLlamaModel(config)
333
+ self.score = KANLinear(config.hidden_size, self.num_labels)
334
+
335
+ # Initialize weights and apply final processing
336
+ self.post_init()
337
+
338
+ class KANLlamaForCausalLM(LlamaForCausalLM):
339
+ config_class = KANLlamaConfig
340
+ def __init__(self, config):
341
+ super().__init__(config)
342
+ self.model = KANLlamaModel(config)
343
+ self.vocab_size = config.vocab_size
344
+ self.lm_head = KANLinear(config.hidden_size, config.vocab_size)
345
+
346
+ # Initialize weights and apply final processing
347
+ self.post_init()