File size: 2,868 Bytes
9b77694 df23d6b 6d42fa0 7dbc9b8 9b77694 c6ddff0 9b77694 6d42fa0 9b77694 e9979c8 9b77694 6d42fa0 9b77694 e9979c8 9b77694 b69b41c 9b77694 d1ae5e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language: Cszech Deustch
tags:
- translation Cszech Deustch model
datasets:
- dcep europarl jrc-acquis
widget:
- text: "Konečná zpráva bude Parlamentu předložena na konci nového funkčního období."
---
# legal_t5_small_trans_cs_de model
Model on translating legal text from Cszech to Deustch. It was first released in
[this repository](https://github.com/agemagician/LegalTrans). This model is trained on three parallel corpus from jrc-acquis, europarl and dcep.
## Model description
legal_t5_small_trans_cs_de is based on the `t5-small` model and was trained on a large corpus of parallel text. This is a smaller model, which scales the baseline model of t5 down by using `dmodel = 512`, `dff = 2,048`, 8-headed attention, and only 6 layers each in the encoder and decoder. This variant has about 60 million parameters.
## Intended uses & limitations
The model could be used for translation of legal texts from Cszech to Deustch.
### How to use
Here is how to use this model to translate legal text from Cszech to Deustch in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead, TranslationPipeline
pipeline = TranslationPipeline(
model=AutoModelWithLMHead.from_pretrained("SEBIS/legal_t5_small_trans_cs_de"),
tokenizer=AutoTokenizer.from_pretrained(pretrained_model_name_or_path = "SEBIS/legal_t5_small_trans_cs_de", do_lower_case=False,
skip_special_tokens=True),
device=0
)
cs_text = "Konečná zpráva bude Parlamentu předložena na konci nového funkčního období."
pipeline([cs_text], max_length=512)
```
## Training data
The legal_t5_small_trans_cs_de model was trained on [JRC-ACQUIS](https://wt-public.emm4u.eu/Acquis/index_2.2.html), [EUROPARL](https://www.statmt.org/europarl/), and [DCEP](https://ec.europa.eu/jrc/en/language-technologies/dcep) dataset consisting of 5 Million parallel texts.
## Training procedure
The model was trained on a single TPU Pod V3-8 for 250K steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training.
### Preprocessing
An unigram model trained with 88M lines of text from the parallel corpus (of all possible language pairs) to get the vocabulary (with byte pair encoding), which is used with this model.
### Pretraining
## Evaluation results
When the model is used for translation test dataset, achieves the following results:
Test results :
| Model | BLEU score |
|:-----:|:-----:|
| legal_t5_small_trans_cs_de | 44.69|
### BibTeX entry and citation info
> Created by [Ahmed Elnaggar/@Elnaggar_AI](https://twitter.com/Elnaggar_AI) | [LinkedIn](https://www.linkedin.com/in/prof-ahmed-elnaggar/)
|