RL_course / config.json
SIA86's picture
Upload PPO LunarLander-v2 trained agent
2309e73 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7985c53c6560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7985c53c65f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7985c53c6680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7985c53c6710>", "_build": "<function ActorCriticPolicy._build at 0x7985c53c67a0>", "forward": "<function ActorCriticPolicy.forward at 0x7985c53c6830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7985c53c68c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7985c53c6950>", "_predict": "<function ActorCriticPolicy._predict at 0x7985c53c69e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7985c53c6a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7985c53c6b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7985c53c6b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7985c53b4b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708376561729126493, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAAh73k8Ns+lTrEPV0RYL7t4lW71MImPQAAAAAAAAAAzZIHPbZeVj/tiFq9XRiTvoFbZ71Lzte9AAAAAAAAAADaIMY9KRQ/uo19iLuHIXc4fGB7O3qHGzkAAAAAAACAP+Kvib6x/1q9DNoluhDqHbnCxr4+RhNxOQAAgD8AAIA/APpSvJ1Stz9r0y6+P1hhPS/ipzoN8E29AAAAAAAAAACNzUY+BsMdP0Bx9L0kFmC+OQ53PdqanL0AAAAAAAAAALPW8D2kIIU/gk+MPcm5z741C8k9qp5RvQAAAAAAAAAAvTdYvpvgAD+nO5Q+uch5vvJvnryXGLc9AAAAAAAAAADNkbE9Cic1uc52i7t1dwg5ajiWO0L9JzoAAIA/AACAP+D6I75ETOQ+ktiYPcP4fr67fZi9ut+LPQAAAAAAAAAAzeY6PeGElrpou485fEmUNGnl6jiLDaa4AACAPwAAgD9mxmk9zV4DP20vkD2SxaW+HQziPGJyAr0AAAAAAAAAAJp2yT2Xlbc+AQUPvjKHfb5lq8m8WaqUOgAAAAAAAAAAELKevt4+7z5oJak+uQF6vnqk5L2elHA+AAAAAAAAAAAmgAc+BW/su7pKcj1sF3o8YNhLvd26Tz0AAIA/AACAPwD0iL1IKZ26hhWrNlUVoDHnkvM6rNbHtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRL3jlxOtaMAWyUTegDjAF0lEdAkXEEdzXBg3V9lChoBkdAcIoTFl05l2gHTRcBaAhHQJFyJ3mmtQt1fZQoaAZHQF2YpM6BAfNoB03oA2gIR0CRcyVFhG6PdX2UKGgGR0BwzpqfvnbJaAdNNgFoCEdAkXN8PBi1A3V9lChoBkdAZnZkgfU4JmgHTegDaAhHQJF0EVHnU2F1fZQoaAZHQHK2E/0NBnloB0v9aAhHQJF1LokiUxF1fZQoaAZHQG9UUfHPu5VoB005AmgIR0CRdkwu/UONdX2UKGgGR0BwhAVuaWonaAdNPQFoCEdAkXbWeg+Ql3V9lChoBkdActSiHqNZNmgHTTQBaAhHQJF3MhQm/nJ1fZQoaAZHQHJo+Rs/IKdoB00iAmgIR0CRd0Zbpu/DdX2UKGgGR0BwhyCz1K5DaAdNmgFoCEdAkXjugctGu3V9lChoBkdAcLXIdU83dmgHTfMBaAhHQJGKyGlANXp1fZQoaAZHQG+f5TqB3A5oB01fAWgIR0CRiyxSHdoGdX2UKGgGR0A4ozZ6D5CXaAdL42gIR0CRjLAFgUlBdX2UKGgGR0Bx2mLWI42kaAdNFwNoCEdAkYzx/7SApnV9lChoBkdAcbZjVhCtzWgHTYABaAhHQJGOXzqbBoF1fZQoaAZHQHHPJJXhfjVoB00rAWgIR0CRjmgLZzxPdX2UKGgGR0BhbUCDEm6YaAdN6ANoCEdAkY7/SMLncXV9lChoBkdAcb/eZG8VYmgHTXoBaAhHQJGPzWkJrtV1fZQoaAZHQHCyBwMpgCxoB01IAWgIR0CRj/EkjX4CdX2UKGgGR0BwPaJWNm16aAdNdwFoCEdAkZC1WjoIOnV9lChoBkdAbsj30wrUb2gHTTgBaAhHQJGRI/Y8Md91fZQoaAZHQHFESbUgB91oB00LAWgIR0CRkZ/6wdKedX2UKGgGR0ByhUsBhhH9aAdNIAFoCEdAkZHnmmtQsXV9lChoBkdAceBb0OEuhGgHTVwBaAhHQJGTqYw7DEZ1fZQoaAZHQHGPjcuanaZoB016AWgIR0CRlf0/W1+idX2UKGgGR0BwstvjwQUYaAdNLQFoCEdAkZbNmthd+3V9lChoBkdARa85p8F6iWgHS+loCEdAkZeeXAuZkXV9lChoBkdAcVxNZeRgZ2gHTRUBaAhHQJGXuh/RVp91fZQoaAZHQHAyMSf16E9oB00zAWgIR0CRmGmnO0LMdX2UKGgGR0Bw022CuloEaAdNEQFoCEdAkZjgO4G2TnV9lChoBkdAcP3/EwWWQmgHTR0BaAhHQJGaXsD4gzR1fZQoaAZHQG2QogV45cVoB00lAWgIR0CRm3c9nscAdX2UKGgGR0BwwozpHI6saAdNJQFoCEdAkZvatcObzHV9lChoBkdAcY3unMt9QWgHTWABaAhHQJGcMxagVXV1fZQoaAZHQG+h/ChvitJoB007AWgIR0CRnRFBIFvAdX2UKGgGR0ByjVMvh60IaAdNKwFoCEdAkZ5X/tICl3V9lChoBkdAb+tB6a9bo2gHTaQBaAhHQJGfVXIU8FJ1fZQoaAZHQHHsV9a2WptoB00cAWgIR0CRoIKQ7tAtdX2UKGgGR0BwrXslb/wRaAdNMwFoCEdAkaCxsqJ/G3V9lChoBkdAbgVK3d9DyGgHTRwBaAhHQJGhcxQBPsR1fZQoaAZHQHEzj7VJ+UhoB02yAWgIR0CRoaGTLW7OdX2UKGgGR0BC3Adfb9IgaAdL32gIR0CRoleSjgyedX2UKGgGR0Byw3SG8EmqaAdNEwFoCEdAkaKLqyGBWnV9lChoBkdAcvFBIWgvlGgHTQMBaAhHQJGlEPXkHUt1fZQoaAZHQGyBiBf8dghoB00ZAWgIR0CRpkI1LrX2dX2UKGgGR0Bxlcwh4dIYaAdNPQFoCEdAkabVV5rxiHV9lChoBkdAbSl/d69kBmgHTbwBaAhHQJGnXPmgam51fZQoaAZHQHHeZiAlOXVoB03CAWgIR0CRqFhJAdGRdX2UKGgGR0ByVKnZTQ3QaAdNPgFoCEdAkah9bLU1AXV9lChoBkdAb9V0Yj0L+mgHTRwBaAhHQJGol3Y+Sr51fZQoaAZHQE/dpqynk1doB0vmaAhHQJGo36sQumJ1fZQoaAZHQEWgA8SwnploB0vTaAhHQJGpEnJDE3t1fZQoaAZHQHDmq8g6ltVoB01bAWgIR0CRq0XJYDDCdX2UKGgGR0BxEzDR+jM3aAdNpgNoCEdAkawZkoWpInV9lChoBkdAc26vaDf3vmgHTWABaAhHQJGsn82rGR51fZQoaAZHQGHJyxzJZGNoB03oA2gIR0CRrVG47Rv4dX2UKGgGR0BuOgg7o0Q9aAdNCgFoCEdAka4AeeWfLHV9lChoBkdAcHgHAymALGgHTVgBaAhHQJGuRPacqe91fZQoaAZHQHHJx4t6HCZoB018AWgIR0CRwNexOclPdX2UKGgGR0BwV0l7dBSlaAdNHgFoCEdAkcLcfigkC3V9lChoBkdAcU1QcPvrnmgHTQ8BaAhHQJHDkb4rSVp1fZQoaAZHQG4DTPKMefZoB00LAWgIR0CRxEJDE3sHdX2UKGgGR0BwfDKNhmXgaAdNJgFoCEdAkcUM+V1OkHV9lChoBkdAcgWNp/PPcGgHTWsBaAhHQJHF8AGSpzd1fZQoaAZHQHFsF0xM361oB01hAWgIR0CRx2QTEit8dX2UKGgGR0BxMBOafBepaAdNKAJoCEdAkcd5nL7oCHV9lChoBkdAb05Htnf2smgHTSkBaAhHQJHJPC9AX2x1fZQoaAZHQHGLtnoPkJdoB01IAWgIR0CRysmF8G9pdX2UKGgGR0BzInbnHNoraAdNOQFoCEdAkcuzLfUF0XV9lChoBkdAbLjEOy3TeGgHTRUBaAhHQJHLyZOSGJx1fZQoaAZHQHDIjZ13dKxoB01uAWgIR0CRzOolUp/gdX2UKGgGR0ByY2cYqG1yaAdNagFoCEdAkc299lVcU3V9lChoBkdAcyiVvMr3CmgHTR8BaAhHQJHOp82Jiy91fZQoaAZHQHDQim2sq8VoB00yAWgIR0CRzt+z+m3wdX2UKGgGR0BwbSOU+s5oaAdNJwFoCEdAkdA0AYHgP3V9lChoBkdAcHwFOO8012gHTVsBaAhHQJHRZ+6RQrN1fZQoaAZHQHJ+prYXfqJoB01NAWgIR0CR1W2/SH/MdX2UKGgGR0BwpKUeMhouaAdNiQFoCEdAkdWaqfe1r3V9lChoBkdAcRMfxc3VC2gHTRQBaAhHQJHWF96Tnq51fZQoaAZHQHIceVHFxXJoB01TAWgIR0CR14qxTsIFdX2UKGgGR0BxI2EQGwA3aAdNTwFoCEdAkdiP/io86nV9lChoBkdAcpZIre67NGgHTTABaAhHQJHYkgGKQ7t1fZQoaAZHQELMuIRAbAFoB0vmaAhHQJHZS+rU9ZB1fZQoaAZHQHCd+n2qT8poB00WAWgIR0CR2W+6y0KJdX2UKGgGR0BxA9IwudwvaAdNUANoCEdAkdo89KVY6nV9lChoBkdAcJGsHSnccmgHTSgBaAhHQJHaRKCg9Nh1fZQoaAZHQG4DXoTwlSloB010AWgIR0CR26pQk5ZKdX2UKGgGR0BgMpDeCTUzaAdN6ANoCEdAkdxmcvugH3V9lChoBkdAa44IJqqOtGgHTSgBaAhHQJHcem/Firl1fZQoaAZHQHJY1lkH2RJoB00tAWgIR0CR3/bblA/tdX2UKGgGR0Bv9GfywwCbaAdNUgFoCEdAkeGrcj7hvXV9lChoBkdAb0VBO58Sf2gHTSQBaAhHQJHhwmlZX+51fZQoaAZHQGbZxhttQ9BoB03oA2gIR0CR4eDRMN+cdX2UKGgGR0BuNwwfyPMjaAdNTgFoCEdAkeH/3WWhRXV9lChoBkdAbQNvTgEU02gHTQwBaAhHQJHigkAxSHd1fZQoaAZHQHA++wgTyrhoB00jAWgIR0CR4qSh8IAwdX2UKGgGR0BwMQS8J2MbaAdNJAFoCEdAkeKxF7Uoa3V9lChoBkdAb4+BFNL13GgHTRsBaAhHQJHj4dtEXtV1fZQoaAZHQHF5uAiFCcBoB00JAWgIR0CR5bKrq+rVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}