sadrasabouri
commited on
Commit
·
b8eb4fa
1
Parent(s):
177ebd7
Update README.md
Browse files
README.md
CHANGED
@@ -101,7 +101,10 @@ processor = Wav2Vec2ProcessorWithLM.from_pretrained("SLPL/Sharif-wav2vec2")
|
|
101 |
def speech_file_to_array_fn(batch):
|
102 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
103 |
speech_array = speech_array.squeeze().numpy()
|
104 |
-
speech_array = librosa.resample(
|
|
|
|
|
|
|
105 |
batch["speech"] = speech_array
|
106 |
return batch
|
107 |
|
@@ -112,24 +115,30 @@ def predict(batch):
|
|
112 |
return_tensors="pt",
|
113 |
padding=True
|
114 |
)
|
115 |
-
|
116 |
-
input_values = features.input_values
|
117 |
-
attention_mask = features.attention_mask
|
118 |
|
119 |
with torch.no_grad():
|
120 |
-
logits = model(
|
|
|
|
|
121 |
batch["prediction"] = processor.batch_decode(logits.numpy()).text
|
122 |
return batch
|
123 |
|
124 |
-
dataset = load_dataset(
|
|
|
|
|
|
|
125 |
dataset = dataset.map(speech_file_to_array_fn)
|
126 |
|
127 |
result = dataset.map(predict, batched=True, batch_size=4)
|
128 |
wer = load_metric("wer")
|
129 |
cer = load_metric("cer")
|
130 |
|
131 |
-
print("WER: {:.2f}".format(
|
132 |
-
|
|
|
|
|
|
|
|
|
133 |
```
|
134 |
|
135 |
*Result (WER) on common-voice 6.1*:
|
|
|
101 |
def speech_file_to_array_fn(batch):
|
102 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
103 |
speech_array = speech_array.squeeze().numpy()
|
104 |
+
speech_array = librosa.resample(
|
105 |
+
np.asarray(speech_array),
|
106 |
+
sampling_rate,
|
107 |
+
processor.feature_extractor.sampling_rate)
|
108 |
batch["speech"] = speech_array
|
109 |
return batch
|
110 |
|
|
|
115 |
return_tensors="pt",
|
116 |
padding=True
|
117 |
)
|
|
|
|
|
|
|
118 |
|
119 |
with torch.no_grad():
|
120 |
+
logits = model(
|
121 |
+
features.input_values,
|
122 |
+
attention_mask=features.attention_mask).logits
|
123 |
batch["prediction"] = processor.batch_decode(logits.numpy()).text
|
124 |
return batch
|
125 |
|
126 |
+
dataset = load_dataset(
|
127 |
+
"csv",
|
128 |
+
ata_files={"test":"dataset.eval.csv"},
|
129 |
+
delimiter=",")["test"]
|
130 |
dataset = dataset.map(speech_file_to_array_fn)
|
131 |
|
132 |
result = dataset.map(predict, batched=True, batch_size=4)
|
133 |
wer = load_metric("wer")
|
134 |
cer = load_metric("cer")
|
135 |
|
136 |
+
print("WER: {:.2f}".format(wer.compute(
|
137 |
+
predictions=result["prediction"],
|
138 |
+
references=result["reference"])))
|
139 |
+
print("CER: {:.2f}".format(cer.compute(
|
140 |
+
predictions=result["prediction"],
|
141 |
+
references=result["reference"])))
|
142 |
```
|
143 |
|
144 |
*Result (WER) on common-voice 6.1*:
|