HTML Charset Model Name Section Overview:  Provide the model name and a 1-2 sentence summary of what the model is. model_id model_summary  Table of Contents Section Overview: This section addresses questions around how the model is intended to be used in different applied contexts, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model. Note this section is not intended to include the license usage details. For that, link directly to the license.  Model Details Section Overview: This section provides basic information about what the model is, its current status, where it came from. It should be useful for anyone who wants to reference the model.  Model Description model_description Provide details about the model. This includes the architecture, version, if it was introduced in a paper, if an implementation is available, and the creators. Any copyright should be attributed here. General information about training procedures, parameters, important disclaimers can also be mentioned in this section. Developed by: developers List (and ideally link to) the people who built the model. Funded by: funded_by List (and ideally link to)  the funding sources that financially, computationally, or otherwise supported  or enabled this model. Shared by [optional]: shared_by List (and ideally link to) the people/organization making the model available online. Model type: model_type You can name the “type” as: 1. Supervision/Learning Method 2. Machine Learning Type 3. Modality Language(s) [NLP]: language Use this field when the system uses or processes natural (human) language.. License: license Name and link to the license being used. Finetuned From Model [optional]: base_model ** this model has another model as its base, link to that model here.  Model Sources optional Repository: repo Paper [optional]: paper Demo [optional]: demo Provide sources for the user to see the model and its details. Additional kinds of resources – training logs, lessons learned, etc. – belong in the More Information section. If you include one thing for this section, link to the repository.  Uses Section Overview: questions around how the model is intended to be used in different applied contexts, discusses the foreseeable users of the model (including those ... by the model).  intended to include the license usage details. For that, link directly to the license.  Direct Use direct_use Explain how the model can be used without fine-tuning, post-processing, or plugging into a pipeline. An example code snippet is recommended.  Downstream Use optional downstream_use Explain how this model can be used and fine-tuned for a task or when plugged into a larger ecosystem or app. An example code snippet is recommended.  Out-of-Scope Use out_of_scope_use List how the model may foreseeably be misused (used in a way it will not work for) and address what users ought not do with the model.  Bias, Risks, and Limitations Section Overview: This section identifies harms, misunderstandings, and technical and sociotechnical limitations. It also provides potential mitigations. Bias, risks, and limitations can sometimes be inseparable/refer to the same issues. Generally, bias and risks are sociotechnical, while limitations are technical: A bias is a stereotype or disproportionate performance (skew) for some subpopulations. A risk is a socially-sensitive issue that the model might cause. A limitation is a likely failure to be addressed following the listed Recommendations. bias_risks_limitations What are the known or foreseeable issues stemming from this model?  Recommendations bias_recommendations What are recommendations with respect to the foreseeable issues? This can include everything from “downsample your image” to filtering explicit content..  Training Details Section Overview: This section provides information to describe and replicate training, including the training data, the speed and size of training elements, and the environmental impact of training. Technical Specifications as well, and content here should link to that section when it is relevant to the training procedure.  useful for people who want to learn more about the model inputs training footprint. for anyone who wants to know the basics of what the model is learning.  Training Data training_data Write 1-2 sentences related to data pre-processing or additional filtering More Information .   Procedure optional  Preprocessing preprocessing Detail tokenization, resizing/rewriting (depending on the modality), etc.  Speeds, Sizes, Times speeds_sizes_times Detail throughput, start/end time, checkpoint sizes, etc.  Evaluation Section Overview: evaluation protocols. Target fairness metrics should be decided based on errors are more likely to be identified in light of the model use. specify model’s evaluation results in a structured way in the model card metadata. parsed and displayed in a widget on the model page. See https://huggingface.co/docs/hub/model-cards#evaluation-results .   Data, Factors & Metrics  Testing Data testing_data Ideally this links to a Dataset Card for testing data.  Factors testing_factors What are the foreseeable circumstances that will influence how the model behaves? This includes domain and context, as well as population subgroups. Evaluation should ideally be disaggregated across factors in order to uncover disparities in performance.  Metrics testing_metrics metrics for evaluation in light of tradeoffs between different errors?  Results results Results based on the Factors and Metrics defined above.  Summary results_summary What do the results say? This can function as a kind of tl;dr for general audiences..  Model Examination optional Section Overview: examination model_examination  Environmental Impact Section Overview: Summarizes the information necessary to calculate environmental impacts . Hardware Type: hardware_type Hours used: hours_used Cloud Provider: cloud_provider Compute Region: cloud_region Carbon Emitted: co2_emitted Carbon emissions can be estimated using the Machine Learning Impact calculator presented in source .  Technical Specifications optional Section Overview: This section includes details about the model architecture, and the compute infrastructure.  Model Architecture and Objective model_specs  Compute Infrastructure compute_infrastructure  Hardware hardware_requirements What are the minimum hardware requirements, e.g. processing, storage, and memory requirements?  Software software  optional Section Overview: The developers’ preferred citation for this model.  BibTeX citation_bibtex  APA citation_apa  Glossary optional Section Overview: This section defines common terms and how metrics are calculated. glossary Clearly define terms in order to be accessible across audiences.  More Information optional Section Overview: lessons learned and more . more_information  Model Card Authors optional Section Overview: who create the model card, . model_card_authors  Model Card Contact Section Overview: contact model_card_contact  How to Get Started with the Model Section Overview: Provides a code snippet to show how to use the model. get_started_code ←Model Cards