File size: 2,196 Bytes
1c2e8fa
 
 
 
4f62174
 
 
 
 
 
3b790ed
 
 
5a41956
 
aa7ca29
095ce9f
bebe3cd
095ce9f
 
 
180b1fb
bebe3cd
80d01d4
 
 
cf93a3a
80d01d4
 
2536e0a
80d01d4
d3f115b
80d01d4
 
 
 
 
 
e0dafe2
80d01d4
2d09452
 
 
 
 
 
80d01d4
 
 
 
ea44c8a
6b5aa8d
80d01d4
ea44c8a
80d01d4
 
ea44c8a
80d01d4
2536e0a
80d01d4
d3f115b
80d01d4
2d09452
aa70f2a
cd0f87b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: other
license_name: stem.ai.mtl
license_link: LICENSE
language:
- en
tags:
- phi-2
- electrical engineering
- Microsoft
datasets:
- STEM-AI-mtl/Electrical-engineering
- garage-bAInd/Open-Platypus
task_categories:
  - question-answering
  - text-generation
pipeline_tag: text-generation
widget:
  - text: "Enter your instruction here"
inference: true
auto_sample: true
inference_code: chat-GPTQ.py
library_tag: transformers
---
# Model Card for Model ID

A unique, deployable and efficient 2.7 billion parameters model in the field of electrical engineering. This repo contains the adapters from the LoRa fine-tuning of the phi-2 model from Microsoft. It was trained on the STEM-AI-mtl/Electrical-engineering dataset combined with garage-bAInd/Open-Platypus.

- **Developed by:** STEM.AI
- **Model type:** Q&A and code generation
- **Language(s) (NLP):** English
- **Finetuned from model:** microsoft/phi-2


### Direct Use

Q&A related to electrical engineering, and Kicad software. Creation of Python code in general, and for Kicad's scripting console.

Refer to [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) model card for recommended prompt format.

### Inference example

[Standard](https://github.com/STEM-ai/Phi-2/blob/4eaa6aaa2679427a810ace5a061b9c951942d66a/chat.py)

[GPTQ format](https://github.com/STEM-ai/Phi-2/blob/ab1ced8d7922765344d824acf1924df99606b4fc/chat-GPTQ.py)

## Training Details

### Training Data

Dataset related to electrical engineering: [STEM-AI-mtl/Electrical-engineering](https://huggingface.co/datasets/STEM-AI-mtl/Electrical-engineering)
It is composed of queries, 65% about general electrical engineering, 25% about Kicad (EDA software) and 10% about Python code for Kicad's scripting console.

In additionataset related to STEM and NLP: [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)

### Training Procedure 
[LoRa script](https://github.com/STEM-ai/Phi-2/raw/4eaa6aaa2679427a810ace5a061b9c951942d66a/LoRa.py)

A LoRa PEFT was performed on a 48 Gb A40 Nvidia GPU.

## Model Card Authors

STEM.AI: stem.ai.mtl@gmail.com\
[William Harbec](https://www.linkedin.com/in/william-harbec-56a262248/)